Quantitative quantum chemistry

We review the current status of quantum chemistry as a predictive tool of chemistry and molecular physics, capable of providing highly accurate, quantitative data about molecular systems. We begin by reviewing wave-function based electronic-structure theory, emphasizing the N-electron hierarchy of coupled-cluster theory and the one-electron hierarchy of correlation-consistent basis sets. Following a discussion of the slow basis-set convergence of dynamical correlation and basis-set extrapolations, we consider the methods of explicit correlation, from the early work of Hylleraas in the 1920s to the latest developments in such methods, capable of yielding high-accuracy results in medium-sized basis sets. Next, we consider the small corrections to the electronic energy (high-order virtual excitations, vibrational, relativistic, and diagonal Born–Oppenheimer corrections) needed for high accuracy and conclude with a review of the composite methods and computational protocols of electronic-structure theory.

[1]  J. Tennyson,et al.  High-Accuracy ab Initio Rotation-Vibration Transitions for Water , 2003, Science.

[2]  K. Szalewicz,et al.  Helium Dimer Interaction Energies from Gaussian Geminal and Orbital Calculations , 2004 .

[3]  H. James,et al.  A Study of the Franck‐Condon Principle , 1936 .

[4]  A. Rutkowski Relativistic perturbation theory. III. A new perturbation approach to the two-electron Dirac-Coulomb equation , 1986 .

[5]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[6]  W. Klopper,et al.  Analytic calculation of first-order molecular properties at the explicitly correlated second-order Moller-Plesset level: basis-set limits for the molecular quadrupole moments of BH and HF. , 2005, The Journal of chemical physics.

[7]  J. Rychlewski,et al.  Explicitly correlated Gaussian functions in variational calculations: the ground state of helium dimer , 1997 .

[8]  Edward F. Valeev,et al.  Analysis of the errors in explicitly correlated electronic structure theory. , 2005, Physical chemistry chemical physics : PCCP.

[9]  C. Pekeris,et al.  Ground State of Two-Electron Atoms , 1958 .

[10]  G. Scuseria,et al.  A new correlation functional based on a transcorrelated Hamiltonian , 2003 .

[11]  W. Klopper Limiting values for Mo/ller–Plesset second‐order correlation energies of polyatomic systems: A benchmark study on Ne, HF, H2O, N2, and He...He , 1995 .

[12]  W. Kutzelnigg The principle-quantum-number (and the radial-quantum-number) expansion of the correlation energy of two-electron atoms. , 2008, Physical chemistry chemical physics : PCCP.

[13]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[14]  W. Klopper Highly accurate coupled-cluster singlet and triplet pair energies from explicitly correlated calculations in comparison with extrapolation techniques , 2001 .

[15]  Edward F. Valeev,et al.  The diagonal Born–Oppenheimer correction beyond the Hartree–Fock approximation , 2003 .

[16]  B. Ruscic,et al.  W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. , 2006, The Journal of chemical physics.

[17]  John A. Montgomery,et al.  A complete basis set model chemistry. IV. An improved atomic pair natural orbital method , 1994 .

[18]  Werner Kutzelnigg,et al.  Theory of the expansion of wave functions in a gaussian basis , 1994 .

[19]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[20]  T. Helgaker,et al.  Second-order Møller-Plesset calculations on the water molecule using Gaussian-type orbital and Gaussian-type geminal theory. , 2008, Physical chemistry chemical physics : PCCP.

[21]  N. Handy The transcorrelated method for accurate correlation energies using gaussian-type functions: examples on He, H2, LiH and H2O , 2002 .

[22]  J. G. Zabolitzky,et al.  Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. IV. A simplified treatment of strong orthogonality in MBPT and coupled cluster calculations , 1984 .

[23]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[24]  M. Blomberg,et al.  PCI-X, a parametrized correlation method containing a single adjustable parameter X , 1994 .

[25]  Charles Schwartz,et al.  Experiment and Theory in Computations of the He Atom Ground State , 2002, physics/0208004.

[26]  H. F. King,et al.  Electron Correlation in Closed Shell Systems. I. Perturbation Theory Using Gaussian‐Type Geminals , 1972 .

[27]  G. A. Petersson,et al.  Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions , 1981 .

[28]  S. Ten-no A simple F12 geminal correction in multi-reference perturbation theory , 2007 .

[29]  L. Adamowicz,et al.  Perturbation calculation of molecular correlation energy using Gaussian-type geminals. Second-order pair energies of LiH and BH , 1978 .

[30]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[31]  H. Monkhorst,et al.  Random tempering of Gaussian‐type geminals. III. Coupled pair calculations on lithium hydride and beryllium , 1988 .

[32]  S. Ten-no Three-electron integral evaluation in the transcorrelated method using a frozen Gaussian geminal , 2000 .

[33]  Mihály Kállay,et al.  Analytic calculation of the diagonal Born-Oppenheimer correction within configuration-interaction and coupled-cluster theory. , 2006, The Journal of chemical physics.

[34]  Mihály Kállay,et al.  The barrier height of the F+H2 reaction revisited: coupled-cluster and multireference configuration-interaction benchmark calculations. , 2008, The Journal of chemical physics.

[35]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[36]  B. Jeziorski,et al.  Bounds for the scattering length of spin-polarized helium from high-accuracy electronic structure calculations. , 2005, The Journal of chemical physics.

[37]  Poul Jørgensen,et al.  The second-order approximate coupled cluster singles and doubles model CC2 , 1995 .

[38]  Krishnan Raghavachari,et al.  Gaussian‐1 theory of molecular energies for second‐row compounds , 1990 .

[39]  Wim Klopper,et al.  Gaussian basis sets and the nuclear cusp problem , 1986 .

[40]  Henry F. Schaefer,et al.  In pursuit of the ab initio limit for conformational energy prototypes , 1998 .

[41]  Edward F. Valeev,et al.  Coupled-cluster methods with perturbative inclusion of explicitly correlated terms: a preliminary investigation. , 2008, Physical chemistry chemical physics : PCCP.

[42]  Frederick R Manby,et al.  General orbital invariant MP2-F12 theory. , 2007, The Journal of chemical physics.

[43]  M. Ratner Molecular electronic-structure theory , 2000 .

[44]  Hans-Joachim Werner,et al.  PNO-CI and PNO-CEPA studies of electron correlation effects , 1976 .

[45]  T. Helgaker,et al.  Accurate quantum-chemical calculations using Gaussian-type geminal and Gaussian-type orbital basis sets: applications to atoms and diatomics. , 2007, Physical chemistry chemical physics : PCCP.

[46]  Robert J. Gdanitz,et al.  A formulation of multiple-reference CI with terms linear in the interelectronic distances , 1993 .

[47]  Nathan J. DeYonker,et al.  Application of the Correlation Consistent Composite Approach (ccCA) to Third-Row (Ga-Kr) Molecules. , 2008, Journal of chemical theory and computation.

[48]  P. Taylor,et al.  Atomic Natural Orbital (ANO) Basis Sets for Quantum Chemical Calculations , 1991 .

[49]  E. Burke Variational Calculation of the Ground State of the Lithium Atom , 1963 .

[50]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[51]  Donald G. Truhlar,et al.  Multi-coefficient extrapolated density functional theory for thermochemistry and thermochemical kinetics , 2005 .

[52]  J. Aguilera-Iparraguirre,et al.  Accurate ab initio computation of thermochemical data for C3Hx (x=0,…,4) species , 2008 .

[53]  H. Quiney,et al.  Anatomy of relativistic energy corrections in light molecular systems , 2001 .

[54]  Nathan J DeYonker,et al.  The correlation-consistent composite approach: application to the G3/99 test set. , 2006, The Journal of chemical physics.

[55]  H. Monkhorst,et al.  Random tempering of Gaussian‐type geminals. I. Atomic systems , 1986 .

[56]  L. Curtiss,et al.  Gaussian-4 theory. , 2007, The Journal of chemical physics.

[57]  Wim Klopper,et al.  Computational determination of equilibrium geometry and dissociation energy of the water dimer , 2000 .

[58]  卞纯宗 I.D.11 , 2005 .

[59]  J. G. Zabolitzky,et al.  Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. I. Second‐order perturbation treatment for He, Be, H2, and LiH , 1983 .

[60]  Hans Peter Lüthi,et al.  The MP2 limit correction applied to coupled cluster calculations of the electronic dissociation energies of the hydrogen fluoride and water dimers , 1999 .

[61]  Mihály Kállay,et al.  The origin of systematic error in the standard enthalpies of formation of hydrocarbons computed via atomization schemes. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[62]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[63]  W. Klopper,et al.  Analytical nuclear gradients for the MP2-R12 method , 2007 .

[64]  Kenneth G. Dyall,et al.  INTERFACING RELATIVISTIC AND NONRELATIVISTIC METHODS. I. NORMALIZED ELIMINATION OF THE SMALL COMPONENT IN THE MODIFIED DIRAC EQUATION , 1997 .

[65]  T. Chikyow,et al.  Role of the one-body Jastrow factor in the transcorrelated self-consistent field equation , 2006 .

[66]  Nathan J DeYonker,et al.  The correlation consistent composite approach (ccCA): an alternative to the Gaussian-n methods. , 2006, The Journal of chemical physics.

[67]  J. Almlöf,et al.  Towards the one‐particle basis set limit of second‐order correlation energies: MP2‐R12 calculations on small Ben and Mgn clusters (n=1–4) , 1993 .

[68]  F. Manby,et al.  Explicitly correlated second-order perturbation theory using density fitting and local approximations. , 2006, The Journal of chemical physics.

[69]  T. Helgaker,et al.  Second-order Møller–Plesset perturbation theory with terms linear in the interelectronic coordinates and exact evaluation of three-electron integrals , 2002 .

[70]  N. Handy,et al.  A first solution, for LiH, of a molecular transcorrelated wave equation by means of restricted numerical integration , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[71]  R. D. Present On the Two‐Quantum Σ‐States of the Hydrogen Molecule , 1935 .

[72]  Branko Ruscic,et al.  Active Thermochemical Tables: accurate enthalpy of formation of hydroperoxyl radical, HO2. , 2006, The journal of physical chemistry. A.

[73]  C. Hättig,et al.  Frequency-dependent nonlinear optical properties with explicitly correlated coupled-cluster response theory using the CCSD(R12) model. , 2007, The Journal of chemical physics.

[74]  D. Bakowies Extrapolation of electron correlation energies to finite and complete basis set targets. , 2007, The Journal of chemical physics.

[75]  So Hirata,et al.  Second- and third-order triples and quadruples corrections to coupled-cluster singles and doubles in the ground and excited states. , 2007, The Journal of chemical physics.

[76]  J. V. Lenthe,et al.  An improved ab initio relativistic zeroth-order regular approximation correct to order 1/c2 , 2000 .

[77]  W. Klopper,et al.  Coupled-cluster theory with simplified linear-r(12) corrections: the CCSD(R12) model. , 2005, The Journal of chemical physics.

[78]  P. Jørgensen,et al.  First-order relativistic corrections to response properties: the hyperpolarizability of the Ne atom , 2004 .

[79]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[80]  K. Singer,et al.  The use of Gaussian (exponential quadratic) wave functions in molecular problems. II. Wave functions for the ground states of the hydrogen atom and of the hydrogen molecule , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[81]  Stanisl,et al.  Second‐order correlation energy for H2O using explicitly correlated Gaussian geminals , 1995 .

[82]  J. Rychlewski,et al.  Benchmark calculations for two-electron systems using explicitly correlated Gaussian functions , 1995 .

[83]  N. Handy,et al.  The adiabatic approximation , 1996 .

[84]  L. Curtiss,et al.  Assessment of Gaussian-3 and density-functional theories on the G3/05 test set of experimental energies. , 2005, The Journal of chemical physics.

[85]  J. Olsen,et al.  Coupled-cluster connected-quadruples corrections to atomization energies , 2003 .

[86]  Rodney J. Bartlett,et al.  COUPLED-CLUSTER THEORY: AN OVERVIEW OF RECENT DEVELOPMENTS , 1995 .

[87]  W. Kutzelnigg,et al.  Accurate adiabatic correction for the hydrogen molecule using the Born-Handy formula , 1997 .

[88]  J. D. Morgan,et al.  Rates of convergence of variational calculations and of expectation values , 1984 .

[89]  Bernd A. Hess,et al.  Revision of the Douglas-Kroll transformation. , 1989, Physical review. A, General physics.

[91]  Hans-Joachim Werner,et al.  A simple and efficient CCSD(T)-F12 approximation. , 2007, The Journal of chemical physics.

[92]  W. Kutzelnigg,et al.  Relativistic Hartree–Fock by means of stationary direct perturbation theory. I. General theory , 1995 .

[93]  Peter R. Taylor,et al.  General contraction of Gaussian basis sets. I. Atomic natural orbitals for first‐ and second‐row atoms , 1987 .

[94]  P. Taylor,et al.  Accurate quantum‐chemical calculations: The use of Gaussian‐type geminal functions in the treatment of electron correlation , 1996 .

[95]  Trygve Helgaker,et al.  Highly accurate calculations of molecular electronic structure , 1999 .

[96]  J. Rychlewski,et al.  The equivalence of explicitly correlated Slater and Gaussian functions in variational quantum chemistry computations: The ground state of H2 , 1994 .

[97]  K. Singer,et al.  The use of Gaussian (exponential quadratic) wave functions in molecular problems - I. General formulae for the evaluation of integrals , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[98]  W. Klopper,et al.  Explicitly correlated calculation of the second-order Møller-Plesset correlation energies of Zn2+ and Zn , 2005 .

[99]  D. Tew,et al.  A comparison of linear and nonlinear correlation factors for basis set limit Møller-Plesset second order binding energies and structures of He2, Be2, and Ne2. , 2006, The Journal of chemical physics.

[100]  J. Olsen,et al.  Coupled-cluster connected quadruples and quintuples corrections to the harmonic vibrational frequencies and equilibrium bond distances of HF, N(2), F(2), and CO. , 2004, The Journal of chemical physics.

[101]  W. Lester,et al.  Some Aspects of the Coulomb Hole of the Ground State of H3 , 1966 .

[102]  W. D. Allen,et al.  The highly anharmonic BH5 potential energy surface characterized in the ab initio limit. , 2005, The Journal of chemical physics.

[103]  James A. Miller,et al.  From the Multiple-Well Master Equation to Phenomenological Rate Coefficients: Reactions on a C3H4 Potential Energy Surface , 2003 .

[104]  Toichiro Kinoshita,et al.  GROUND STATE OF THE HELIUM ATOM , 1957 .

[105]  Seiichiro Ten-no,et al.  Initiation of explicitly correlated Slater-type geminal theory , 2004 .

[106]  Juana Vázquez,et al.  HEAT: High accuracy extrapolated ab initio thermochemistry. , 2004, The Journal of chemical physics.

[107]  Werner Kutzelnigg,et al.  Quasirelativistic theory equivalent to fully relativistic theory. , 2005, The Journal of chemical physics.

[108]  Theresa L Windus,et al.  Thermodynamic properties of the C5, C6, and C8 n-alkanes from ab initio electronic structure theory. , 2005, The journal of physical chemistry. A.

[109]  Hubert M. James,et al.  Wave Functions and Potential Curves for Excited H2 , 1938 .

[110]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[111]  W. Klopper Simple recipe for implementing computation of first‐order relativistic corrections to electron correlation energies in framework of direct perturbation theory , 1997 .

[112]  C. Bauschlicher,et al.  Is the Lamb shift chemically significant , 2001 .

[113]  M. Heckert,et al.  Molecular equilibrium geometries based on coupled-cluster calculations including quadruple excitations , 2005 .

[114]  Wesley D. Allen,et al.  The heat of formation of NCO , 1993 .

[115]  A. Thakkar,et al.  Ground-state energies for the helium isoelectronic series. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[116]  Hans-Joachim Werner,et al.  Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B-Ne, and Al-Ar. , 2008, The Journal of chemical physics.

[117]  J. Noga,et al.  The accuracy of atomization energies from explicitly correlated coupled-cluster calculations , 2001 .

[118]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[119]  S. Grimme,et al.  Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. , 2006, Physical chemistry chemical physics : PCCP.

[120]  J. G. Zabolitzky,et al.  A new functional for variational calculation of atomic and molecular second-order correlation energies , 1982 .

[121]  J. Gauss,et al.  Perturbative treatment of scalar-relativistic effects in coupled-cluster calculations of equilibrium geometries and harmonic vibrational frequencies using analytic second-derivative techniques. , 2007, The Journal of chemical physics.

[122]  P. Taylor,et al.  Application of Gaussian-type geminals in local second-order Møller-Plesset perturbation theory. , 2006, The Journal of chemical physics.

[123]  Kirk A. Peterson,et al.  Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction , 1994 .

[124]  D. Tew,et al.  A diagonal orbital-invariant explicitly-correlated coupled-cluster method , 2008 .

[125]  Some Theorems Concerning Symmetry, Angular Momentum, and Completeness of Atomic Geminals with Explicit r12 Dependence , 1967 .

[126]  D. Tew,et al.  The weak orthogonality functional in explicitly correlated pair theories. , 2007, The Journal of chemical physics.

[127]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[128]  James S. Sims,et al.  Combined Configuration-Interaction—Hylleraas-Type Wave-Function Study of the Ground State of the Beryllium Atom , 1971 .

[129]  J. Noga,et al.  Basis set limit value for the static dipole polarizability of beryllium , 1997 .

[130]  K. Peterson,et al.  Re-examination of atomization energies for the Gaussian-2 set of molecules , 1999 .

[131]  Wenjian Liu,et al.  Matrix formulation of direct perturbation theory of relativistic effects in a kinetically balanced basis , 2008 .

[132]  Hiroshi Nakatsuji,et al.  Solving the Schrodinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method. , 2007, The Journal of chemical physics.

[133]  M. Gutowski,et al.  Coupled-cluster and explicitly correlated perturbation-theory calculations of the uracil anion. , 2007, The Journal of chemical physics.

[134]  D. Truhlar,et al.  The Gaussian-2 method with proper dissociation, improved accuracy, and less cost , 1999 .

[135]  Seiichiro Ten-no,et al.  Explicitly correlated second order perturbation theory: introduction of a rational generator and numerical quadratures. , 2004, The Journal of chemical physics.

[136]  Donald G. Truhlar,et al.  Doubly Hybrid Meta DFT: New Multi-Coefficient Correlation and Density Functional Methods for Thermochemistry and Thermochemical Kinetics , 2004 .

[137]  D. Bakowies Accurate extrapolation of electron correlation energies from small basis sets. , 2007, The Journal of chemical physics.

[138]  J. Komasa Lower bounds to the dynamic dipole polarizability of beryllium , 2002 .

[139]  Henry F. Schaefer,et al.  The ab initio limit quartic force field of BH3 , 2005, J. Comput. Chem..

[140]  W. D. Allen,et al.  Anharmonic force field, vibrational energies, and barrier to inversion of SiH3− , 2000 .

[141]  Wim Klopper,et al.  Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets , 2002 .

[142]  L. Wolniewicz NONADIABATIC ENERGIES OF THE GROUND STATE OF THE HYDROGEN MOLECULE , 1995 .

[143]  K. Szalewicz,et al.  Analytic first-order properties from explicitly correlated many-body perturbation theory and Gaussian geminal basis , 1998 .

[144]  A. Rutkowski Relativistic perturbation theory: II. One-electron variational perturbation calculations , 1986 .

[145]  J. Noga,et al.  Second order explicitly correlated R12 theory revisited: a second quantization framework for treatment of the operators' partitionings. , 2007, The Journal of chemical physics.

[146]  Frederick R Manby,et al.  Explicitly correlated local second-order perturbation theory with a frozen geminal correlation factor. , 2006, The Journal of chemical physics.

[147]  J. Komasa,et al.  Electron affinity of 7Li. , 2006, The Journal of chemical physics.

[148]  R. Bartlett,et al.  The full CCSDT model for molecular electronic structure , 1987 .

[149]  Hans Peter Lüthi,et al.  TOWARDS THE ACCURATE COMPUTATION OF PROPERTIES OF TRANSITION METAL COMPOUNDS : THE BINDING ENERGY OF FERROCENE , 1996 .

[150]  H. James,et al.  The Ground State of the Hydrogen Molecule , 1933 .

[151]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[152]  Trygve Helgaker,et al.  Basis-set convergence in correlated calculations on Ne, N2, and H2O , 1998 .

[153]  J. Noga,et al.  Alternative formulation of the matrix elements in MP2‐R12 theory , 2005 .

[154]  K. Szalewicz,et al.  Gaussian geminals in explicitly correlated coupled cluster theory including single and double excitations , 1999 .

[155]  J. Rychlewski,et al.  Many‐electron explicitly correlated Gaussian functions. I. General theory and test results , 1993 .

[156]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[157]  T. Helgaker,et al.  Automated calculation of fundamental frequencies: Application to AlH3 using the coupled-cluster singles-and-doubles with perturbative triples method , 2003 .

[158]  J. Hirschfelder Removal of electron-electron poles from many electron hamiltonians , 1963 .

[159]  J. Pople,et al.  Møller–Plesset theory for atomic ground state energies , 1975 .

[160]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[161]  Christoph van Wüllen,et al.  Accurate and efficient treatment of two-electron contributions in quasirelativistic high-order Douglas-Kroll density-functional calculations. , 2005, The Journal of chemical physics.

[162]  Nathan J. DeYonker,et al.  Performance of the correlation consistent composite approach for transition states: a comparison to G3B theory. , 2007, The Journal of chemical physics.

[163]  Trygve Helgaker,et al.  The CC3 model: An iterative coupled cluster approach including connected triples , 1997 .

[164]  W. Kutzelnigg Perturbation theory of relativistic corrections , 1989 .

[165]  K. Dyall Interfacing relativistic and nonrelativistic methods. II. Investigation of a low-order approximation , 1998 .

[166]  Nathan J. DeYonker,et al.  Accurate enthalpies of formation of alkali and alkaline earth metal oxides and hydroxides: assessment of the correlation consistent composite approach (ccCA). , 2006, The journal of physical chemistry. A.

[167]  K. Dyall,et al.  Interfacing relativistic and nonrelativistic methods. III. Atomic 4-spinor expansions and integral approximations , 1999 .

[168]  S. Hirata Tensor Contraction Engine: Abstraction and Automated Parallel Implementation of Configuration-Interaction, Coupled-Cluster, and Many-Body Perturbation Theories , 2003 .

[169]  J. Rychlewski,et al.  21P state of Be from exponentially correlated Gaussian functions , 2001 .

[170]  Kenneth G. Dyall,et al.  Interfacing relativistic and nonrelativistic methods. IV. One- and two-electron scalar approximations , 2001 .

[171]  J. Noga,et al.  An explicitly correlated coupled cluster calculation of the helium–helium interatomic potential , 1995 .

[172]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[173]  D. Schwenke The extrapolation of one-electron basis sets in electronic structure calculations: how it should work and how it can be made to work. , 2005, The Journal of chemical physics.

[174]  J. G. Zabolitzky,et al.  Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. V. Cartesian Gaussian geminals and the neon atom , 1986 .

[175]  John A. Montgomery,et al.  A complete basis set model chemistry. V. Extensions to six or more heavy atoms , 1996 .

[176]  K. Peterson,et al.  An examination of intrinsic errors in electronic structure methods using the Environmental Molecular Sciences Laboratory computational results database and the Gaussian-2 set , 1998 .

[177]  Mihály Kállay,et al.  Coupled-cluster methods including noniterative corrections for quadruple excitations. , 2005, The Journal of chemical physics.

[178]  J. G. Zabolitzky,et al.  Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. III. Coupled cluster treatment for He, Be, H2, and LiH , 1984 .

[179]  W. Klopper,et al.  Anharmonic force fields and thermodynamic functions using density functional theory , 2004, physics/0411065.

[180]  D. Tew,et al.  New correlation factors for explicitly correlated electronic wave functions. , 2005, The Journal of chemical physics.

[181]  J. G. Zabolitzky,et al.  Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. II. Perturbation treatment through third order for He, Be, H2, and LiH , 1983 .

[182]  K. Ruedenberg,et al.  Correlation energy extrapolation by intrinsic scaling. I. Method and application to the neon atom. , 2004, The Journal of chemical physics.

[183]  S. Ten-no,et al.  Basis set limits of the second order Moller-Plesset correlation energies of water, methane, acetylene, ethylene, and benzene. , 2007, The Journal of chemical physics.

[184]  P. Ho,et al.  Theoretical Study of the Thermochemistry of Molecules in the SiO-H System , 2001 .

[185]  G. A. Petersson,et al.  A complete basis set model chemistry. III. The complete basis set‐quadratic configuration interaction family of methods , 1991 .

[186]  J. Davenport Editor , 1960 .

[187]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[188]  H. F. King,et al.  Gaussian Geminals for Electron Pair Correlation , 1970 .

[189]  L. Wolniewicz,et al.  Accurate Adiabatic Treatment of the Ground State of the Hydrogen Molecule , 1964 .

[190]  N. Handy Correlated gaussian wavefunctions , 1973 .

[191]  W. Kutzelnigg The adiabatic approximation I. The physical background of the Born-Handy ansatz , 1997 .

[192]  Edward F. Valeev Improving on the resolution of the identity in linear R12 ab initio theories , 2004 .

[193]  Donald G. Truhlar,et al.  Optimized Parameters for Scaling Correlation Energy , 1999 .

[194]  Wojciech Cencek,et al.  Accurate relativistic energies of one‐ and two‐electron systems using Gaussian wave functions , 1996 .

[195]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[196]  G. A. Petersson,et al.  Interference effects in pair correlation energies: Helium L‐limit energies , 1981 .

[197]  W. Klopper,et al.  Inclusion of the (T) triples correction into the linear‐r12 corrected coupled‐cluster model CCSD(R12) , 2006 .

[198]  P. Taylor,et al.  Basis set convergence of post-CCSD contributions to molecular atomization energies. , 2007, The Journal of chemical physics.

[199]  D. Schwenke,et al.  Benchmark calculations of the complete configuration-interaction limit of Born-Oppenheimer diagonal corrections to the saddle points of isotopomers of the H + H2 reaction. , 2005, The Journal of chemical physics.

[200]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[201]  Nathan J. DeYonker,et al.  Quantitative computational thermochemistry of transition metal species. , 2007, The journal of physical chemistry. A.

[202]  E. Hylleraas Über den Grundterm der Zweielektronenprobleme von H−, He, Li+, Be++ usw. , 1930 .

[203]  P. Pulay,et al.  The adiabatic correction to molecular potential surfaces in the SCF approximation , 1984 .

[204]  J. Tennyson,et al.  Estimation of Lamb-shift effects for molecules: Application to the rotation-vibration spectra of water , 2001 .

[205]  R. Bartlett,et al.  Elimination of Coulombic infinities through transformation of the Hamiltonian , 1998 .

[206]  Klaus Ruedenberg,et al.  Correlation energy extrapolation by intrinsic scaling. V. Electronic energy, atomization energy, and enthalpy of formation of water. , 2006, The Journal of chemical physics.

[207]  D. Truhlar,et al.  Multilevel geometry optimization , 2000 .

[208]  E. Clementi,et al.  Time scales and other problems in linking simulations of simple chemical systems to more complex ones , 1993 .

[209]  Hans-Joachim Werner,et al.  Explicitly correlated RMP2 for high-spin open-shell reference states. , 2008, The Journal of chemical physics.

[210]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[211]  J. Gauss,et al.  Basis set limit CCSD(T) harmonic vibrational frequencies. , 2007, The journal of physical chemistry. A.

[212]  T. Helgaker,et al.  Direct perturbation theory of magnetic properties and relativistic corrections for the point nuclear and Gaussian nuclear models , 2001 .

[213]  N. Handy On the minimization of the variance of the transcorrelated hamiltonian , 1971 .

[214]  Jan M. L. Martin Ab initio total atomization energies of small molecules — towards the basis set limit , 1996 .

[215]  Wojciech Cencek,et al.  Benchmark calculations for He2+ and LiH molecules using explicitly correlated Gaussian functions , 2000 .

[216]  J. Noga,et al.  Coupled cluster theory that takes care of the correlation cusp by inclusion of linear terms in the interelectronic coordinates , 1994 .

[217]  Nathan J. DeYonker,et al.  Computational s-block thermochemistry with the correlation consistent composite approach. , 2007, The journal of physical chemistry. A.

[218]  G. A. Petersson,et al.  A complete basis set model chemistry. VI. Use of density functional geometries and frequencies , 1999 .

[219]  Mihály Kállay,et al.  Basis-set extrapolation techniques for the accurate calculation of molecular equilibrium geometries using coupled-cluster theory. , 2006, The Journal of chemical physics.

[220]  O. Sǐnanoğlu,et al.  Many‐Electron Theory of Atoms, Molecules and Their Interactions , 2007 .

[221]  Hans Peter Lüthi,et al.  Ab initio computations close to the one‐particle basis set limit on the weakly bound van der Waals complexes benzene–neon and benzene–argon , 1994 .

[222]  J. Noga,et al.  CH5+ : THE STORY GOES ON. AN EXPLICITLY CORRELATED COUPLED-CLUSTER STUDY , 1997 .

[223]  N. Handy,et al.  The determination of energies and wavefunctions with full electronic correlation , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[224]  W. Klopper,et al.  Coupled-cluster response theory with linear-r12 corrections: the CC2-R12 model for excitation energies. , 2006, The Journal of chemical physics.

[225]  Mihály Kállay,et al.  Higher excitations in coupled-cluster theory , 2001 .

[226]  W. Kutzelnigg,et al.  Toward spectroscopic accuracy of ab initio calculations of vibrational frequencies and related quantities: a case study of the HF molecule , 1998 .

[227]  P. Löwdin Quantum Theory of Many-Particle Systems. I. Physical Interpretations by Means of Density Matrices, Natural Spin-Orbitals, and Convergence Problems in the Method of Configurational Interaction , 1955 .

[228]  Ph. Durand,et al.  Regular Two-Component Pauli-Like Effective Hamiltonians in Dirac Theory , 1986 .

[229]  H. Sellers The adiabatic correction to the ring puckering potential of oxetane , 1984 .

[230]  O. Sǐnanoğlu,et al.  Many‐Electron Theory of Atoms and Molecules. II , 1962 .

[231]  Jan M. L. Martin,et al.  TOWARDS STANDARD METHODS FOR BENCHMARK QUALITY AB INITIO THERMOCHEMISTRY :W1 AND W2 THEORY , 1999, physics/9904038.

[232]  W. Lester,et al.  Gaussian Correlation Functions: Two‐Electron Systems , 1964 .

[233]  John F. Stanton,et al.  Perturbative treatment of the similarity transformed Hamiltonian in equation‐of‐motion coupled‐cluster approximations , 1995 .

[234]  Wojciech Cencek,et al.  Sub-microhartree accuracy potential energy surface for H3+ including adiabatic and relativistic effects. I. Calculation of the potential points , 1998 .

[235]  R. Christoffersen,et al.  Explicitly correlated configuration interaction wavefunctions using spherical Gaussians. Formulation and initial application to LiH , 1975 .

[236]  Wim Klopper,et al.  CC-R12, a correlation cusp corrected coupled-cluster method with a pilot application to the Be2 potential curve , 1992 .

[237]  S. Ten-no A feasible transcorrelated method for treating electronic cusps using a frozen Gaussian geminal , 2000 .

[238]  Mark S. Gordon,et al.  Scaling all correlation energy in perturbation theory calculations of bond energies and barrier heights , 1986 .

[239]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[240]  W. D. Allen,et al.  The barrier to linearity of water , 1999 .

[241]  B. Ruscic,et al.  Benchmark atomization energy of ethane: Importance of accurate zero-point vibrational energies and diagonal Born–Oppenheimer corrections for a ‘simple’ organic molecule , 2007 .

[242]  S. F. Boys,et al.  The integral formulae for the variational solution of the molecular many-electron wave equation in terms of Gaussian functions with direct electronic correlation , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[243]  N. Handy,et al.  Hylleraas-type wavefunction for lithium hydride , 1977 .

[244]  Kaizar Amin,et al.  Introduction to Active Thermochemical Tables: Several “Key” Enthalpies of Formation Revisited† , 2004 .

[245]  J. Lennard-jones,et al.  Molecular Spectra and Molecular Structure , 1929, Nature.

[246]  A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction. , 2004, The Journal of chemical physics.

[247]  G. A. Petersson,et al.  A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms , 1991 .

[248]  Frank Jensen,et al.  Estimating the Hartree—Fock limit from finite basis set calculations , 2005 .

[249]  Søren Fournais,et al.  Sharp Regularity Results for Coulombic Many-Electron Wave Functions , 2003, math-ph/0312060.

[250]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[251]  T. Helgaker,et al.  A second-quantization framework for the unified treatment of relativistic and nonrelativistic molecular perturbations by response theory. , 2006, The Journal of chemical physics.

[252]  D. Schwenke Beyond the Potential Energy Surface: Ab initio Corrections to the Born−Oppenheimer Approximation for H2O† , 2001 .

[253]  Jacek Rychlewski,et al.  Explicitly correlated wave functions in chemistry and physics : theory and applications , 2003 .

[254]  J. Stanton Why CCSD(T) works: a different perspective , 1997 .

[255]  J. Noga,et al.  Static electrical response properties of F−, Ne, and HF using explicitly correlated R12 coupled cluster approach , 2001 .

[256]  A. Rutkowski Relativistic perturbation theory. I. A new perturbation approach to the Dirac equation , 1986 .

[257]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[258]  D. Truhlar,et al.  Assessment of multicoefficient correlation methods, second-order Møller-Plesset perturbation theory, and density functional theory for H3O(+)(H2O)n (n = 1-5) and OH(-)(H2O)n (n = 1-4). , 2008, The journal of physical chemistry. B.

[259]  C. Schwartz,et al.  Importance of Angular Correlations between Atomic Electrons , 1962 .

[260]  D. Truhlar,et al.  Multi-coefficient Gaussian-3 method for calculating potential energy surfaces , 1999 .

[261]  R. Hill,et al.  Rates of convergence and error estimation formulas for the Rayleigh–Ritz variational method , 1985 .

[262]  K. Szalewicz,et al.  COMPLETENESS CRITERIA FOR EXPLICITLY CORRELATED GAUSSIAN GEMINAL BASES OF AXIAL SYMMETRY , 1997 .

[263]  D. Dixon,et al.  Theoretical study of the heats of formation of small silicon-containing compounds , 1999 .

[264]  Mihaly Kallay,et al.  W3 theory: robust computational thermochemistry in the kJ/mol accuracy range. , 2003, Journal of Chemical Physics.

[265]  John A. Montgomery,et al.  Calibration and comparison of the Gaussian-2, complete basis set, and density functional methods for computational thermochemistry , 1998 .

[266]  Trygve Helgaker,et al.  A priori calculation of molecular properties to chemical accuracy , 2004 .

[267]  W. Kutzelnigg,et al.  Direct perturbation theory of relativistic effects for explicitly correlated wave functions: The He isoelectronic series , 1997 .

[268]  J. Komasa Exponentially correlated Gaussian functions in variational calculations. Momentum space properties of the ground state helium dimer , 2001 .

[269]  Edward F. Valeev Combining explicitly correlated R12 and Gaussian geminal electronic structure theories. , 2006, The Journal of chemical physics.

[270]  P. Kollman,et al.  Encyclopedia of computational chemistry , 1998 .

[271]  S. F. Boys Electronic wave functions - I. A general method of calculation for the stationary states of any molecular system , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[272]  D. C. Griffin,et al.  Approximate relativistic corrections to atomic radial wave functions , 1976 .

[273]  N. Handy,et al.  A condition to remove the indeterminacy in interelectronic correlation functions , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[274]  N. Handy,et al.  A calculation for the energies and wavefunctions for states of neon with full electronic correlation accuracy , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[275]  Frederick R. Manby,et al.  Density fitting in second-order linear-r12 Møller–Plesset perturbation theory , 2003 .

[276]  D. Yarkony,et al.  On the evaluation of non‐Born–Oppenheimer interactions for Born–Oppenheimer wave functions. V. A body fixed frame approach. Applications to isotope effects on equilibrium geometries and the adiabatic correction for the X 1Σ+ state of LiH , 1988 .

[277]  W. A. Jong,et al.  Performance of coupled cluster theory in thermochemical calculations of small halogenated compounds , 2003 .

[278]  Ernest R. Davidson,et al.  Modern Electronic Structure Theory , 1997, J. Comput. Chem..

[279]  M. Tambasco,et al.  ENERGIES AND OSCILLATOR STRENGTHS FOR LITHIUMLIKE IONS , 1997 .

[280]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[281]  W. Kutzelnigg,et al.  CID and CEPA calculations with linear r12 terms , 1991 .

[282]  P. Taylor,et al.  An ab initio study of the structure, torsional potential energy function, and electric properties of disilane, ethane, and their deuterated isotopomers. , 2005, The Journal of chemical physics.

[283]  Jacek Komasa,et al.  Benchmark energy calculations on Be-like atoms , 2002 .

[284]  Juana Vázquez,et al.  High-accuracy extrapolated ab initio thermochemistry. II. Minor improvements to the protocol and a vital simplification. , 2006, The Journal of chemical physics.

[285]  Werner Kutzelnigg,et al.  Quasirelativistic theory I. Theory in terms of a quasi-relativistic operator , 2006 .

[286]  John A. Montgomery,et al.  A complete basis set model chemistry. VII. Use of the minimum population localization method , 2000 .

[287]  D. Clary Variational calculations on many-electron diatomic molecules using Hylleraas-type wavefunctions , 1977 .

[288]  Werner Kutzelnigg,et al.  Rates of convergence of the partial‐wave expansions of atomic correlation energies , 1992 .

[289]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[290]  Henry F. Schaefer,et al.  A new implementation of the full CCSDT model for molecular electronic structure , 1988 .

[291]  J. Noga,et al.  Explicitly correlated R12 coupled cluster calculations for open shell systems , 2000 .

[292]  J. Rychlewski,et al.  Many‐electron explicitly correlated Gaussian functions. II. Ground state of the helium molecular ion He+2 , 1995 .

[293]  Amir Karton,et al.  Comment on: “Estimating the Hartree–Fock limit from finite basis set calculations” [Jensen F (2005) Theor Chem Acc 113:267] , 2005, physics/0509216.

[294]  H. Schaefer,et al.  The diagonal correction to the Born–Oppenheimer approximation: Its effect on the singlet–triplet splitting of CH2 and other molecular effects , 1986 .

[295]  Hess,et al.  Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. , 1985, Physical review. A, General physics.

[296]  W. Klopper,et al.  Extensions of r12 corrections to CC2-R12 for excited states. , 2006, The Journal of chemical physics.

[297]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[298]  John F. Stanton,et al.  A simple correction to final state energies of doublet radicals described by equation-of-motion coupled cluster theory in the singles and doubles approximation , 1997 .

[299]  Christof Hättig,et al.  Quintuple-ζ quality coupled-cluster correlation energies with triple-ζ basis sets , 2007 .

[300]  R. Metzger,et al.  Piecewise polynomial configuration interaction natural orbital study of 1 s2 helium , 1979 .

[301]  Werner Kutzelnigg,et al.  Quasirelativistic theory. II. Theory at matrix level. , 2007, The Journal of chemical physics.

[302]  D. Truhlar,et al.  MULTI-COEFFICIENT CORRELATION METHOD FOR QUANTUM CHEMISTRY , 1999 .

[303]  Steven E. Wheeler,et al.  Thermochemistry of key soot formation intermediates: C3H3 isomers. , 2007, The journal of physical chemistry. A.

[304]  H. Monkhorst,et al.  Random tempering of Gaussian‐type geminals. II. Molecular systems , 1987 .