A conjugate gradient method and a multigrid algorithm for Morley s finite element approximation of the biharmonic equation
暂无分享,去创建一个
[1] P. Lascaux,et al. Some nonconforming finite elements for the plate bending problem , 1975 .
[2] R. Rannacher,et al. On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .
[3] W. Hackbusch,et al. A New Convergence Proof for the Multigrid Method Including the V-Cycle , 1983 .
[4] J. Bourgat,et al. Numerical study of a dual iterative method for solving a finite element approximation of the biharmonic equation , 1976 .
[5] Randolph E. Bank,et al. An optimal order process for solving finite element equations , 1981 .
[6] I. Babuska,et al. Analysis of mixed methods using mesh dependent norms , 1980 .
[7] D. Braess,et al. On the numerical solution of the biharmonic equation and the role of squaring matrices , 1986 .
[8] L. Morley. The Triangular Equilibrium Element in the Solution of Plate Bending Problems , 1968 .
[9] D. Arnold,et al. Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .
[10] H. Beckert,et al. J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .
[11] Josef Stoer,et al. Solution of Large Linear Systems of Equations by Conjugate Gradient Type Methods , 1982, ISMP.
[12] Rolf Rannacher,et al. On nonconforming an mixed finite element methods for plate bending problems. The linear case , 1979 .
[13] A. C. Breton. 4. Notes on Pokomchi (Guatemala). , 1919 .