A conjugate gradient method and a multigrid algorithm for Morley s finite element approximation of the biharmonic equation

SummaryThe numerical solution of the linear equations arising from Morley's nonconforming displacement method is studied. A suitable preconditioning for the conjugate gradient method is described. Furthermore, the nonconformity of the discretization necessitates some non-standard ingredients of multigrid algorithms.

[1]  P. Lascaux,et al.  Some nonconforming finite elements for the plate bending problem , 1975 .

[2]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[3]  W. Hackbusch,et al.  A New Convergence Proof for the Multigrid Method Including the V-Cycle , 1983 .

[4]  J. Bourgat,et al.  Numerical study of a dual iterative method for solving a finite element approximation of the biharmonic equation , 1976 .

[5]  Randolph E. Bank,et al.  An optimal order process for solving finite element equations , 1981 .

[6]  I. Babuska,et al.  Analysis of mixed methods using mesh dependent norms , 1980 .

[7]  D. Braess,et al.  On the numerical solution of the biharmonic equation and the role of squaring matrices , 1986 .

[8]  L. Morley The Triangular Equilibrium Element in the Solution of Plate Bending Problems , 1968 .

[9]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[10]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[11]  Josef Stoer,et al.  Solution of Large Linear Systems of Equations by Conjugate Gradient Type Methods , 1982, ISMP.

[12]  Rolf Rannacher,et al.  On nonconforming an mixed finite element methods for plate bending problems. The linear case , 1979 .

[13]  A. C. Breton 4. Notes on Pokomchi (Guatemala). , 1919 .