A Topological Study of Tilings

To tile consists in assembling colored tiles on Z2 while respecting color matching. Tilings, the outcome of the tile process, can be seen as a computationmodel. In order to better understand the global structure of tilings, we introduce two topologies on tilings, one a la Cantor and another one a la Besicovitch. Our topologies are concerned with the whole set of tilings that can be generated by any tile set and are thus independent of a particular tile set. We study the properties of these two spaces and compare them. Finally, we introduce two infinite games on these spaces that are promising tools for the study of the structure of tilings.

[1]  William P. Hanf,et al.  Nonrecursive tilings of the plane. I , 1974, Journal of Symbolic Logic.

[2]  Bruno Durand De la logique aux pavages , 2002, Theor. Comput. Sci..

[3]  Jarkko Kari,et al.  On Aperiodic Sets of Wang Tiles , 1997, Foundations of Computer Science: Potential - Theory - Cognition.

[4]  Leonid A. Levin,et al.  Complex tilings , 2001, STOC '01.

[5]  Bruno Durand,et al.  Tilings: recursivity and regularity , 2004, Theor. Comput. Sci..

[6]  Dale Myers,et al.  Nonrecursive tilings of the plane. II , 1974, Journal of Symbolic Logic.

[7]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[8]  Robert L. Berger The undecidability of the domino problem , 1966 .

[9]  Yuri Gurevich,et al.  The Classical Decision Problem , 1997, Perspectives in Mathematical Logic.

[10]  S. Vajda,et al.  Contribution to the Theory of Games , 1951 .

[11]  Olivier Serre,et al.  Contribution à l'étude des jeux sur des graphes de processus à pile , 2004 .

[12]  Hao Wang Proving theorems by pattern recognition — II , 1961 .

[13]  Grégory Lafitte,et al.  Universal Tilings , 2007, STACS.

[14]  Bruno Durand Tilings and Quasiperiodicity , 1999, Theor. Comput. Sci..