Secure quantum key distribution using squeezed states

We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor er=1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel.

[1]  Cirac,et al.  Entanglement purification of gaussian continuous variable quantum states , 2000, Physical review letters.

[2]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[3]  P. Oscar Boykin,et al.  A Proof of the Security of Quantum Key Distribution , 1999, STOC '00.

[4]  M. Hillery Quantum cryptography with squeezed states , 1999, quant-ph/9909006.

[5]  Seth Lloyd,et al.  ANALOG QUANTUM ERROR CORRECTION , 1998 .

[6]  Margaret D. Reid Quantum cryptography using continuous variable Einstein-Podolsky-Rosen correlations and quadrature phase amplitude measurements , 2000, QELS 2000.

[7]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[8]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[9]  Gilles Brassard,et al.  Quantum public key distribution reinvented , 1987, SIGA.

[10]  P. Oscar Boykin,et al.  A Proof of the Security of Quantum Key Distribution , 1999, Symposium on the Theory of Computing.

[11]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[12]  Alexander S. Holevo Sending Quantum Information with Gaussian States , 1998 .

[13]  Samuel L. Braunstein Error Correction for Continuous Quantum Variables , 1998 .

[14]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Dominic Mayers,et al.  Quantum Key Distribution and String Oblivious Transfer in Noisy Channels , 1996, CRYPTO.

[16]  T. Ralph,et al.  Continuous variable quantum cryptography , 1999, quant-ph/9907073.

[17]  Discrete formulation of teleportation of continuous variables , 1999, quant-ph/9905081.

[18]  Entanglement purification of gaussian continuous variable quantum states , 1999, QELS 2000.

[19]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[20]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  S. Bose,et al.  Entanglement quantification and purification in continuous variable systems , 2000 .

[22]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[23]  M. Reid Quantum cryptography with a predetermined key, using continuous-variable Einstein-Podolsky-Rosen correlations , 1999, quant-ph/9909030.