Adaptive Personalized Privacy in Participatory Sensing

The participatory sensing paradigm has interesting applications, e.g. electrosmog/air-pollution monitoring, carbon footprint estimation, etc., but raises serious privacy concerns. Existing static privacy-enabling approaches offer no privacy guarantees, while individual privacy requirements cannot be met. In this work, we propose an adaptive privacy protection scheme, in order to meet personalized locationprivacy protection requirements and experimentally prove its effectiveness against static privacy-protection schemes.

[1]  Joseph Gray Jackson,et al.  Privacy and Freedom , 1968 .

[2]  Wen Hu,et al.  Towards trustworthy participatory sensing , 2009 .

[3]  Liviu Iftode,et al.  Privately querying location-based services with SybilQuery , 2009, UbiComp.

[4]  Moni Naor,et al.  Adaptively secure multi-party computation , 1996, STOC '96.

[5]  George Danezis,et al.  Towards an Information Theoretic Metric for Anonymity , 2002, Privacy Enhancing Technologies.

[6]  Andreas Krause,et al.  Toward Community Sensing , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[7]  Ling Liu,et al.  Protecting Location Privacy with Personalized k-Anonymity: Architecture and Algorithms , 2008, IEEE Transactions on Mobile Computing.

[8]  Jingsha He,et al.  Privacy protection in location-sharing services , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[9]  John Krumm,et al.  A survey of computational location privacy , 2009, Personal and Ubiquitous Computing.

[10]  Stefano Spaccapietra,et al.  SeMiTri: a framework for semantic annotation of heterogeneous trajectories , 2011, EDBT/ICDT '11.

[11]  Bart Preneel,et al.  Towards Measuring Anonymity , 2002, Privacy Enhancing Technologies.

[12]  Christos Komninakis A fast and accurate Rayleigh fading simulator , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[13]  Ramachandran Ramjee,et al.  PRISM: platform for remote sensing using smartphones , 2010, MobiSys '10.

[14]  Reza Shokri,et al.  A distortion-based metric for location privacy , 2009, WPES '09.

[15]  Yufei Tao,et al.  Personalized privacy preservation , 2006, Privacy-Preserving Data Mining.

[16]  Salil S. Kanhere,et al.  A survey on privacy in mobile participatory sensing applications , 2011, J. Syst. Softw..

[17]  Deborah Estrin,et al.  PEIR, the personal environmental impact report, as a platform for participatory sensing systems research , 2009, MobiSys '09.

[18]  George Danezis,et al.  Quantifying Location Privacy: The Case of Sporadic Location Exposure , 2011, PETS.

[19]  Jean-Yves Le Boudec,et al.  Quantifying Location Privacy , 2011, 2011 IEEE Symposium on Security and Privacy.

[20]  Xinwen Fu,et al.  CAP: A Context-Aware Privacy Protection System for Location-Based Services , 2009, 2009 29th IEEE International Conference on Distributed Computing Systems.

[21]  Nikita Borisov,et al.  Protecting location privacy against inference attacks , 2010, WPES '10.

[22]  Wei Pan,et al.  SoundSense: scalable sound sensing for people-centric applications on mobile phones , 2009, MobiSys '09.

[23]  Jianliang Xu,et al.  Non-Exposure Location Anonymity , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[24]  Deborah Estrin,et al.  Personal data vaults: a locus of control for personal data streams , 2010, CoNEXT.