On logical universality of Belousov-Zhabotinsky vesicles

Belousov-Zhabotinsky (BZ) excitable chemical medium exhibits a rich variety of spatial patterns of excitation. In a sub-excitable light-sensitive chemical medium, an asymmetric disturbing or excitation, causes formation of localized travelling excitation wave-fragments. When two or more wave-fragments collide, they annihilate or merge into new wave-fragment. The wave-fragments can be thought as elementary units of information and their interaction sites as a logical gates. Size and life span of a wave-fragment depends on a level of medium’s illumination. By encapsulating BZ reaction into a lipid vesicle, we can manipulate the BZ-derived logical gates. By interpreting wave-fragments as values of Boolean variables, we design a collision-based polymorphic logical gate in BZ vesicles. The gate implements operation xnor for low illumination, and it acts as nor gate for high illumination.

[1]  K. Showalter,et al.  Wave propagation in subexcitable media with periodically modulated excitability. , 2001, Physical review letters.

[2]  Andrew Adamatzky,et al.  Binary collisions between wave-fragments in a sub-excitable Belousov–Zhabotinsky medium , 2007 .

[3]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[4]  Andrew Adamatzky,et al.  On Polymorphic Logical Gates in Subexcitable Chemical Medium , 2010, Int. J. Bifurc. Chaos.

[5]  Andrew Adamatzky Universal computation in excitable media: the 2 + medium , 1997 .

[6]  N. Margolus Physics-like models of computation☆ , 1984 .

[7]  Jerzy Gorecki,et al.  Information processing with structured excitable medium , 2009, Natural Computing.

[8]  L. Bull,et al.  Dynamic control and information processing in the Belousov-Zhabotinsky reaction using a coevolutionary algorithm. , 2008, The Journal of chemical physics.

[9]  Andrew Adamatzky,et al.  Slime mould logical gates: exploring ballistic approach , 2010, 1005.2301.

[10]  Jerzy Gorecki,et al.  Information Processing with Chemical Excitations - from Instant Machines to an Artificial Chemical Brain , 2006, Int. J. Unconv. Comput..

[11]  Andrew Adamatzky,et al.  Collision-based implementation of a two-bit adder in excitable cellular automaton , 2009 .

[12]  F. W. Schneider,et al.  LOGICAL GATES USING A NONLINEAR CHEMICAL REACTION , 1994 .

[13]  Andrew Adamatzky,et al.  Towards Arithmetic Circuits in Sub‐Excitable Chemical Media , 2011 .

[14]  Valentina Beato,et al.  Pulse propagation in a model for the photosensitive Belousov-Zhabotinsky reaction with external noise , 2003, SPIE International Symposium on Fluctuations and Noise.

[15]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[16]  Kenichi Yoshikawa,et al.  Information operations with multiple pulses on an excitable field , 2003 .

[17]  Andrew Adamatzky,et al.  Implementation of glider guns in the light-sensitive Belousov-Zhabotinsky medium. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Andrew Adamatzky,et al.  Simple Collision-Based Chemical Logic Gates with Adaptive Computing , 2009, Int. J. Nanotechnol. Mol. Comput..

[19]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[20]  Andrew Adamatzky Topics in Reaction-Diffusion Computers , 2011 .

[21]  Klaus-Peter Zauner,et al.  Artificial Wet Neuronal Networks from Compartmentalised Excitable Chemical Media , 2011, ERCIM News.

[22]  Jerzy Gorecki,et al.  Basic Information Processing Operations with Pulses of Excitation in a Reaction-Diffusion System , 2009, Int. J. Unconv. Comput..

[23]  John Ross,et al.  Implementation of logic functions and computations by chemical kinetics , 1995 .

[24]  K. G. Budden Wave Propagation , 1969, Nature.

[25]  Kenneth Showalter,et al.  Logic gates in excitable media , 1995 .

[26]  Andrew Adamatzky,et al.  Collision-based computing in Belousov–Zhabotinsky medium , 2004 .

[27]  Andrew Adamatzky,et al.  Initiation of Waves in BZ Encapsulated Vesicles Using Light - Towards Design of Computing Architectures , 2012, Int. J. Unconv. Comput..

[28]  Andrew Adamatzky,et al.  Experimental validation of binary collisions between wave fragments in the photosensitive Belousov–Zhabotinsky reaction , 2009 .

[29]  Andrew Adamatzky,et al.  Collision-Based Computing , 2002, Springer London.

[30]  Jerzy Gorecki,et al.  On Chemical Methods of Direction and Distance Sensing , 2009, Int. J. Unconv. Comput..

[31]  Andrew Adamatzky,et al.  On computing in fine-grained compartmentalised Belousov-Zhabotinsky medium , 2010, 1006.1900.