Porous Talcum-Based Steatite Ceramics Fabricated by the Admixture of Organic Particles: Experimental Characterization and Effective Medium/Field Modeling of Thermo-Mechanical Properties

In this paper, an experimental campaign, as regards the thermo-mechanical properties (heat capacity, thermal conductivity, Young’s modulus, and tensile (bending) strength) of talcum-based steatite ceramics with artificially introduced porosity, is presented. The latter has been created by adding various amounts of an organic pore-forming agent, almond shell granulate, prior to compaction and sintering of the green bodies. The so-obtained porosity-dependent material parameters have been represented by homogenization schemes from effective medium/effective field theory. As regards the latter, thermal conductivity and elastic properties are well described by the self-consistent estimate, with effective material properties scaling in a linear manner with porosity, with the latter in the range of 1.5 vol-%, representing the intrinsic porosity of the ceramic material, to 30 vol-% in this study. On the other hand, strength properties are, due to the localization of the failure mechanism in the quasi-brittle material, characterized by a higher-order power-law dependency on porosity.

[1]  Song-Jeng Huang,et al.  Effect of Ball-Milled Steatite Powder on the Latent Heat Energy Storage Properties and Heat Charging–Discharging Periods of Paraffin Wax as Phase Change Material , 2022, Micromachines.

[2]  R. Lackner,et al.  Pore space of steatite ceramics triggered by the allowance of natural fibers: High-resolution X-ray microscopy analysis and related thermo-mechanical properties , 2022, Materials & Design.

[3]  A. Jäger,et al.  A validated multiscale model linking microstructural features of fired clay brick to its macroscopic multiaxial strength , 2022, Mechanics of Materials.

[4]  A. Jäger,et al.  Continuum micromechanics model for fired clay bricks: upscaling of experimentally identified microstructural features to macroscopic elastic stiffness and thermal conductivity , 2021, Materials & Design.

[5]  Sh. K. Ismailov,et al.  Nature of the Luminescence of SNC Steatite Ceramic , 2021, Atomic Energy.

[6]  P. Blanchet,et al.  Steatite Powder Additives in Wood-Cement Drywall Particleboards , 2020, Materials.

[7]  P. Coelho,et al.  Effect of indenter material on reliability of all-ceramic crowns. , 2020, Journal of the mechanical behavior of biomedical materials.

[8]  Noor A Nawafleh,et al.  Influence of Antagonist Material on Fatigue and Fracture Resistance of Zirconia Crowns , 2020, European Journal of Dentistry.

[9]  Jung-Bo Huh,et al.  Evaluating the Wear of Resin Teeth by Different Opposing Restorative Materials , 2019, Materials.

[10]  G. Schneider,et al.  Fracture toughness of porous materials – Experimental methods and data , 2019, Data in brief.

[11]  G. Meschke,et al.  Effective Diffusivity of Porous Materials with Microcracks: Self-Similar Mean-Field Homogenization and Pixel Finite Element Simulations , 2018, Transport in Porous Media.

[12]  G. Schneider,et al.  A geometric model for the fracture toughness of porous materials , 2018, Acta Materialia.

[13]  R. Lackner,et al.  Thin-Shell Model for Effective Thermal and Electrical Conductivity of Highly Porous Closed-Cell Metal Foams , 2016, Transport in Porous Media.

[14]  G. Meschke,et al.  A cascade continuum micromechanics model for the effective elastic properties of porous materials , 2016 .

[15]  G. Meschke,et al.  Cascade Continuum Micromechanics Model for the Effective Diffusivity of Porous Materials: Exponential Hierarchy across Cascade Levels , 2015 .

[16]  R. Lackner,et al.  Multi-level homogenization of strength properties of hierarchical-organized matrix–inclusion materials , 2015 .

[17]  R. Lackner,et al.  Power-law scaling of thermal conductivity of highly porous ceramics , 2015 .

[18]  R. Lackner,et al.  Sesqui-power scaling of plateau strength of closed-cell foams , 2013 .

[19]  C. Hellmich,et al.  Ultrasonic contact pulse transmission for elastic wave velocity and stiffness determination: Influence of specimen geometry and porosity , 2013 .

[20]  R. Lackner,et al.  Sesqui-power scaling of elasticity of closed-cell foams , 2012 .

[21]  G. Meschke,et al.  Micromechanics model for tortuosity and homogenized diffusion properties of porous materials with distributed micro‐cracks , 2011 .

[22]  A. Sola,et al.  Sintering behaviour, microstructure and mechanical properties of low quartz content vitrified ceramics using volcanic ash , 2008 .

[23]  C. Leonelli,et al.  Volcanic ash as alternative raw materials for traditional vitrified ceramic products , 2007 .

[24]  Franz-Josef Ulm,et al.  Microporomechanics: Dormieux/Microporomechanics , 2006 .

[25]  I. Sevostianov,et al.  Elastic and electric properties of closed-cell aluminum foams Cross-property connection , 2006 .

[26]  S. Kanaun Dielectric properties of matrix composite materials with high volume concentrations of inclusions (effective field approach) , 2003 .

[27]  A. Zaoui Continuum Micromechanics: Survey , 2002 .

[28]  K. Markov Justification of an effective field method in elasto-statics of heterogeneous solids , 2001 .

[29]  Guo‐Jun Zhang,et al.  Microstructure and Mechanical Properties of Porous Alumina Ceramics Fabricated by the Decomposition of Aluminum Hydroxide , 2001 .

[30]  Pierre Suquet,et al.  Continuum Micromechanics , 1997, Encyclopedia of Continuum Mechanics.

[31]  André Zaoui,et al.  Structural morphology and constitutive behaviour of microheterogeneous materials , 1997 .

[32]  Valery M. Levin,et al.  EFFECTIVE FIELD METHOD IN MECHANICS OF MATRIX COMPOSITE MATERIALS , 1994 .

[33]  K. Markov Advances in Mathematical Modelling of Composite Materials , 1994 .

[34]  A. Norris A differential scheme for the effective moduli of composites , 1985 .

[35]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[36]  T. Mori,et al.  Note on volume integrals of the elastic field around an ellipsoidal inclusion , 1972 .

[37]  J. A. Cape,et al.  Temperature and Finite Pulse‐Time Effects in the Flash Method for Measuring Thermal Diffusivity , 1963 .

[38]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[39]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[40]  Robert D. Cowan,et al.  Pulse Method of Measuring Thermal Diffusivity at High Temperatures , 1961 .

[41]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[42]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  R. Bishop,et al.  Stress Waves in Solids , 1954, Nature.

[44]  I. Sevostianov,et al.  Non-interaction Approximation in the Problem of Effective Properties , 2013 .

[45]  S. Kanaun,et al.  Effective Field Method in the Theory of Heterogeneous Media , 2013 .

[46]  I. Sevostianov,et al.  Effective Properties of Heterogeneous Materials , 2013 .

[47]  A. Boccaccini,et al.  Determination of stress concentration factors in porous materials , 1996 .

[48]  G. Ondracek The quantitative microstructure-field property correlation of multiphase and porous materials , 1987 .

[49]  R. Mclaughlin A study of the differential scheme for composite materials , 1977 .

[50]  J. D. Eshelby Elastic inclusions and inhomogeneities , 1961 .

[51]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[52]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.