Competitive-Ratio Approximation Schemes for Minimizing the Makespan in the Online-List Model

We consider online scheduling on multiple machines for jobs arriving one-by-one with the objective of minimizing the makespan. For any number of identical parallel or uniformly related machines, we provide a competitive-ratio approximation scheme that computes an online algorithm whose competitive ratio is arbitrarily close to the best possible competitive ratio. We also determine this value up to any desired accuracy. This is the first application of competitive-ratio approximation schemes in the online-list model. The result proves the applicability of the concept in different online models. We expect that it fosters further research on other online problems.

[1]  Sartaj Sahni,et al.  Bounds for List Schedules on Uniform Processors , 1980, SIAM J. Comput..

[2]  Gerhard J. Woeginger,et al.  Randomized online scheduling on two uniform machines , 2001, SODA '99.

[3]  Amos Fiat,et al.  New algorithms for an ancient scheduling problem , 1992, STOC '92.

[4]  E.L. Lawler,et al.  Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey , 1977 .

[5]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[6]  Marek Karpinski,et al.  On-line Load Balancing for Related Machines , 1997, WADS.

[7]  Rudolf Fleischer,et al.  Online Scheduling Revisited , 2000, ESA.

[8]  Oscar H. Ibarra,et al.  Bounds for LPT Schedules on Uniform Processors , 1977, SIAM J. Comput..

[9]  Adam Kurpisz,et al.  Competitive-Ratio Approximation Schemes for Makespan Scheduling Problems , 2012, WAOA.

[10]  Jirí Sgall,et al.  Preemptive Online Scheduling: Optimal Algorithms for All Speeds , 2006, ESA.

[11]  Ramaswamy Chandrasekaran,et al.  A Note on "An On-Line Scheduling Heuristic with Better Worst Case Ratio than Graham's List Scheduling" , 1997, SIAM J. Comput..

[12]  Kirk Pruhs,et al.  Online scheduling , 2003 .

[13]  Donglei Du,et al.  Preemptive on-line scheduling for two uniform processors , 1998, Oper. Res. Lett..

[14]  David R. Karger,et al.  A better algorithm for an ancient scheduling problem , 1994, SODA '94.

[15]  Yuval Rabani,et al.  A Better Lower Bound for On-Line Scheduling , 1994, Inf. Process. Lett..

[16]  Gerhard J. Woeginger,et al.  An On-Line Scheduling Heuristic With Better Worst Case Ratio Than Graham's List Scheduling , 1993, SIAM J. Comput..

[17]  Jirí Sgall,et al.  A Lower Bound on Deterministic Online Algorithms for Scheduling on Related Machines Without Preemption , 2011, Theory of Computing Systems.

[18]  György Turán,et al.  On the performance of on-line algorithms for partition problems , 1989, Acta Cybern..

[19]  Ramaswamy Chandrasekaran,et al.  Improved Bounds for the Online Scheduling Problem , 2003, SIAM J. Comput..

[20]  Gerhard J. Woeginger,et al.  An Optimal Algorithm for Preemptive On-line Scheduling , 1994, ESA.

[21]  Robert E. Tarjan,et al.  Amortized efficiency of list update and paging rules , 1985, CACM.

[22]  Anna R. Karlin,et al.  Competitive snoopy caching , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[23]  Lin Chen,et al.  Approximating the optimal competitive ratio for an ancient online scheduling problem , 2013, ArXiv.

[24]  Nicole Megow,et al.  A New Approach to Online Scheduling: Approximating the Optimal Competitive Ratio , 2012, SODA.

[25]  Evripidis Bampis,et al.  Approximation schemes for minimizing average weighted completion time with release dates , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[26]  Susanne Albers,et al.  Better bounds for online scheduling , 1997, STOC '97.

[27]  Jiri Sgall,et al.  On-line scheduling --- a survey , 1997 .

[28]  Gerhard J. Woeginger,et al.  An optimal algorithm for preemptive on-line scheduling , 1995, Oper. Res. Lett..