Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics

[1]  Aviv Regev,et al.  A revised airway epithelial hierarchy includes CFTR-expressing ionocytes , 2018, Nature.

[2]  A. van Oudenaarden,et al.  Single-Cell Transcriptomics Meets Lineage Tracing. , 2018, Cell stem cell.

[3]  Boxi Kang,et al.  Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing , 2018, Nature Medicine.

[4]  Martin J. Aryee,et al.  Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation , 2018, Cell.

[5]  Tracy T Batchelor,et al.  Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq , 2018, Science.

[6]  A. Oudenaarden,et al.  Whole-organism clone tracing using single-cell sequencing , 2018, Nature.

[7]  J. Junker,et al.  Simultaneous lineage tracing and cell-type identification using CRISPR/Cas9-induced genetic scars , 2018, Nature Biotechnology.

[8]  James A. Gagnon,et al.  Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain , 2018, Nature Biotechnology.

[9]  Allon M Klein,et al.  Single-cell gene expression reveals a landscape of regulatory T cell phenotypes shaped by the TCR , 2018, Nature Immunology.

[10]  Amir Giladi,et al.  Single-Cell Genomics: A Stepping Stone for Future Immunology Discoveries , 2018, Cell.

[11]  Chun Jimmie Ye,et al.  Multiplexed droplet single-cell RNA-sequencing using natural genetic variation , 2017, Nature Biotechnology.

[12]  Je-Gun Joung,et al.  SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA from single cells , 2018, Genome research.

[13]  J. Peyron,et al.  Mitochondrial Transfer in the Leukemia Microenvironment. , 2017, Trends in cancer.

[14]  V. Bafna,et al.  Ultraaccurate genome sequencing and haplotyping of single human cells , 2017, Proceedings of the National Academy of Sciences.

[15]  Nicola J. Rinaldi,et al.  Genetic effects on gene expression across human tissues , 2017, Nature.

[16]  D. Edwards,et al.  NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. , 2017, Blood.

[17]  E. Shapiro,et al.  A biological-computational human cell lineage discovery platform based on duplex molecular inversion probes , 2017, bioRxiv.

[18]  Ken Chen,et al.  SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models , 2017, Genome Biology.

[19]  Nicholas A. Sinnott-Armstrong,et al.  An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues , 2017, Nature Methods.

[20]  Wei Chen,et al.  Polylox barcoding reveals haematopoietic stem cell fates realized in vivo , 2017, Nature.

[21]  Nuno A. Fonseca,et al.  Comprehensive molecular characterization of mitochondrial genomes in human cancers , 2017, bioRxiv.

[22]  Boxi Kang,et al.  Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing , 2017, Cell.

[23]  R. Sandberg,et al.  Single-cell transcriptomics uncovers distinct molecular signatures of stem cells in chronic myeloid leukemia , 2017, Nature Medicine.

[24]  Fabian J Theis,et al.  The Human Cell Atlas , 2017, bioRxiv.

[25]  C. Walsh,et al.  Building a lineage from single cells: genetic techniques for cell lineage tracking , 2017, Nature Reviews Genetics.

[26]  N. Hacohen,et al.  Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors , 2017, Science.

[27]  M. Hurles,et al.  Somatic mutations reveal asymmetric cellular dynamics in the early human embryo , 2017, Nature.

[28]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[29]  Mariella G. Filbin,et al.  Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq , 2017, Science.

[30]  M. Schaub,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[31]  Thomas M. Norman,et al.  Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens , 2016, Cell.

[32]  Charles P. Lin,et al.  Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of Hematopoietic Stem Cells , 2016, Cell.

[33]  F. Sánchez‐Madrid,et al.  Mitochondria Know No Boundaries: Mechanisms and Functions of Intercellular Mitochondrial Transfer , 2016, Front. Cell Dev. Biol..

[34]  Roland Eils,et al.  Complex heatmaps reveal patterns and correlations in multidimensional genomic data , 2016, Bioinform..

[35]  E. Shapiro,et al.  A generic, cost-effective, and scalable cell lineage analysis platform , 2016, Genome research.

[36]  James A. Gagnon,et al.  Whole-organism lineage tracing by combinatorial and cumulative genome editing , 2016, Science.

[37]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[38]  S. Shao,et al.  PDIA6 promotes the proliferation of HeLa cells through activating the Wnt/β-catenin signaling pathway , 2016, Oncotarget.

[39]  V. Imbert,et al.  Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. , 2016, Blood.

[40]  C. von Kalle,et al.  In Vivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases , 2016, Cell stem cell.

[41]  Xinjian Wang,et al.  Age-Related Accumulation of Somatic Mitochondrial DNA Mutations in Adult-Derived Human iPSCs. , 2016, Cell stem cell.

[42]  Anneliese O. Speak,et al.  T cell fate and clonality inference from single cell transcriptomes , 2016, Nature Methods.

[43]  Peter J. Park,et al.  Somatic mutation in single human neurons tracks developmental and transcriptional history , 2015, Science.

[44]  Patrick F. Chinnery,et al.  The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease , 2015, Nature Reviews Genetics.

[45]  Zheng Li,et al.  MitoRCA-seq reveals unbalanced cytocine to thymine transition in Polg mutant mice , 2015, Scientific Reports.

[46]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[47]  C. Ponting,et al.  G&T-seq: parallel sequencing of single-cell genomes and transcriptomes , 2015, Nature Methods.

[48]  Andrés Caicedo,et al.  MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function , 2015, Scientific Reports.

[49]  Ash A. Alizadeh,et al.  Robust enumeration of cell subsets from tissue expression profiles , 2015, Nature Methods.

[50]  M. Stoneking,et al.  Extensive tissue-related and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations , 2015, Proceedings of the National Academy of Sciences.

[51]  Allon M. Klein,et al.  Clonal dynamics of native haematopoiesis , 2014, Nature.

[52]  Bin Tean Teh,et al.  Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer , 2014, eLife.

[53]  Jian Lu,et al.  Extensive pathogenicity of mitochondrial heteroplasmy in healthy human individuals , 2014, Proceedings of the National Academy of Sciences.

[54]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[55]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[56]  Charity W. Law,et al.  voom: precision weights unlock linear model analysis tools for RNA-seq read counts , 2014, Genome Biology.

[57]  R. Poulsom,et al.  Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors , 2013, eLife.

[58]  Rui Li,et al.  Somatic point mutations occurring early in development: a monozygotic twin study , 2013, Journal of Medical Genetics.

[59]  D. Wallace,et al.  Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. , 2013, Cold Spring Harbor perspectives in biology.

[60]  Anton Nekrutenko,et al.  RNA–DNA differences in human mitochondria restore ancestral form of 16S ribosomal RNA , 2013, Genome research.

[61]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[62]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[63]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[64]  Pradeep S Rajendran,et al.  Single-cell dissection of transcriptional heterogeneity in human colon tumors , 2011, Nature Biotechnology.

[65]  Heng Li,et al.  Improving SNP discovery by base alignment quality , 2011, Bioinform..

[66]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[67]  Laura C. Greaves,et al.  Mitochondrial DNA mutations in human colonic crypt stem cells. , 2003, The Journal of clinical investigation.

[68]  D. Turnbull,et al.  Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. , 2001, American journal of human genetics.