Parsimonious reduction of Gaussian mixture models with a variational-Bayes approach

Aggregating statistical representations of classes is an important task for current trends in scaling up learning and recognition, or for addressing them in distributed infrastructures. In this perspective, we address the problem of merging probabilistic Gaussian mixture models in an efficient way, through the search for a suitable combination of components from mixtures to be merged. We propose a new Bayesian modelling of this combination problem, in association to a variational estimation technique, that handles efficiently the model complexity issue. A main feature of the present scheme is that it merely resorts to the parameters of the original mixture, ensuring low computational cost and possibly communication, should we operate on a distributed system. Experimental results are reported on real data.

[1]  Petr Savický,et al.  Methods for multidimensional event classification: A case study using images from a Cherenkov gamma-ray telescope , 2004 .

[2]  Cordelia Schmid,et al.  Toward Category-Level Object Recognition (Lecture Notes in Computer Science) , 2007 .

[3]  Jacob Goldberger,et al.  Hierarchical Clustering of a Mixture Model , 2004, NIPS.

[4]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[5]  Nuno Vasconcelos,et al.  Image indexing with mixture hierarchies , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  Aristidis Likas,et al.  Bayesian feature and model selection for Gaussian mixture models , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Douglas A. Reynolds,et al.  Robust text-independent speaker identification using Gaussian mixture speaker models , 1995, IEEE Trans. Speech Audio Process..

[8]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[9]  Marc Gelgon,et al.  Gossip-Based Computation of a Gaussian Mixture Model for Distributed Multimedia Indexing , 2008, IEEE Transactions on Multimedia.

[10]  Cordelia Schmid,et al.  Toward Category-Level Object Recognition , 2006, Toward Category-Level Object Recognition.

[11]  Robert D. Nowak,et al.  Distributed EM algorithms for density estimation and clustering in sensor networks , 2003, IEEE Trans. Signal Process..

[12]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  William D. Penny,et al.  Bayesian Approaches to Gaussian Mixture Modeling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Pierrick Bruneau,et al.  Parsimonious variational-Bayes mixture aggregation with a Poisson prior , 2009, 2009 17th European Signal Processing Conference.

[15]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[16]  Christopher M. Bishop,et al.  Bayesian Hierarchical Mixtures of Experts , 2002, UAI.

[17]  Roger Mohr,et al.  Mixture densities for video objects recognition , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[18]  Nuno Vasconcelos,et al.  Learning Mixture Hierarchies , 1998, NIPS.

[19]  Alexander Zien,et al.  Probabilistic Semi-Supervised Clustering with Constraints , 2006 .

[20]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[21]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .

[22]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[23]  A.R. Runnalls,et al.  A Kullback-Leibler Approach to Gaussian Mixture Reduction , 2007 .

[24]  Patrick Pérez,et al.  Nonparametric motion characterization using causal probabilistic models for video indexing and retrieval , 2002, IEEE Trans. Image Process..

[25]  Hagai Attias,et al.  A Variational Bayesian Framework for Graphical Models , 1999 .

[26]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[27]  Frédéric Jurie,et al.  Latent mixture vocabularies for object categorization and segmentation , 2009, Image Vis. Comput..

[28]  Yoav Freund,et al.  An Adaptive Version of the Boost by Majority Algorithm , 1999, COLT.

[29]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[30]  Noureddine Mouaddib,et al.  Merging distributed database summaries , 2007, CIKM '07.