The Sylvester-Chvatal Theorem

The Sylvester-Gallai theorem asserts that every finite set S of points in two-dimensional Euclidean space includes two points, a and b, such that either there is no other point in S on the line ab, or the line ab contains all the points in S. Chvatal extended the notion of lines to arbitrary metric spaces and made a conjecture that generalizes the Sylvester-Gallai theorem. In the present article we prove this conjecture.