Comparative study of thermal conductivity in crystalline and amorphous nanocomposite

Silicon nanocrystals (SiNCs)/polystyrene (PS) nanocomposite has been observed to have a significant decrease in thermal conductivity in terms of the SiNC fraction with unspecified factors remained unclear. In this paper, amorphous silicon nanoparticles (a-SiNPs) with a mean diameter of 6 nm and PS nanocomposites were synthesized, and their thermal conductivity, including the density and specific heat, was compared with our previous work which investigated well-crystalized SiNPs (6 nm) and PS nanocomposite. The difference between amorphous and crystalline structure is insignificant, but phonon scattering at SiNPs and PS boundary is the key influencing factor of thermal conductivity reduction. The effective thermal conductivity models for nanocomposite revealed that the thermal boundary resistance, explained by Kapitza principle, is estimated to be 4 × 10−7 m2K/W, showing the significant effect of nanostructured heterogenic surface resistance on overall heat transfer behavior. Preservation of unique propert...

[1]  P. Keblinski,et al.  Phonon interference in crystalline and amorphous confined nanoscopic films , 2017 .

[2]  Juekuan Yang,et al.  Thermal conductivity of individual silicon nanoribbons. , 2016, Nanoscale.

[3]  Renkun Chen,et al.  Thermal transport in amorphous materials: a review , 2016 .

[4]  T. Nozaki,et al.  Thermal conductivity of silicon nanocrystals and polystyrene nanocomposite thin films , 2016 .

[5]  T. Nozaki,et al.  Double-parallel-junction hybrid solar cells based on silicon nanocrystals , 2016 .

[6]  M. Nomura,et al.  Reduction of thermal conductivity by surface scattering of phonons in periodic silicon nanostructures , 2016 .

[7]  M. Nomura,et al.  Reduction of thermal conductance by coherent phonon scattering in two-dimensional phononic crystals of different lattice types , 2015, 1507.00422.

[8]  Koji Miyazaki,et al.  Heat conduction in nanostructured materials , 2016 .

[9]  D. Tang,et al.  Tuning the Interfacial Thermal Conductance between Polystyrene and Sapphire by Controlling the Interfacial Adhesion. , 2015, ACS applied materials & interfaces.

[10]  Woochul Kim,et al.  Strategies for engineering phonon transport in thermoelectrics , 2015 .

[11]  Martin Maldovan,et al.  Phonon wave interference and thermal bandgap materials. , 2015, Nature materials.

[12]  Junichiro Shiomi,et al.  Crystalline-Amorphous Silicon Nanocomposites with Reduced Thermal Conductivity for Bulk Thermoelectrics. , 2015, ACS applied materials & interfaces.

[13]  D. Poulikakos,et al.  Sub-amorphous thermal conductivity in ultrathin crystalline silicon nanotubes. , 2015, Nano letters.

[14]  H. Matsui,et al.  Anomalous reduction of thermal conductivity in coherent nanocrystal architecture for silicon thermoelectric material , 2015 .

[15]  T. Nozaki,et al.  A parametric study of non-thermal plasma synthesis of silicon nanoparticles from a chlorinated precursor , 2014 .

[16]  T. Nozaki,et al.  Plasma Synthesis of Silicon Nanocrystals: Application to Organic/Inorganic Photovoltaics through Solution Processing , 2014 .

[17]  T. Nozaki,et al.  Hybrid Silicon Nanocrystal/Poly(3-hexylthiophene-2,5-diyl) Solar Cells from a Chlorinated Silicon Precursor , 2013 .

[18]  J. Underwood,et al.  Heat transport by long mean free path vibrations in amorphous silicon nitride near room temperature , 2013 .

[19]  Jie Chen,et al.  Thermal Contact Resistance Across Nanoscale Silicon Dioxide and Silicon Interface , 2012, 1210.0354.

[20]  Alexander A. Balandin,et al.  Phononics in low-dimensional materials , 2012 .

[21]  Fabrizio Cleri,et al.  Thermal boundary resistance at silicon-silica interfaces by molecular dynamics simulations , 2012 .

[22]  I. Puri,et al.  Modifying thermal transport in electrically conducting polymers: effects of stretching and combining polymer chains. , 2012, The Journal of chemical physics.

[23]  Gang Chen,et al.  Heat transport in silicon from first-principles calculations , 2011, 1107.5288.

[24]  C. Dames,et al.  Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths. , 2011, Nano letters.

[25]  Erin Baker,et al.  Estimating the manufacturing cost of purely organic solar cells , 2009 .

[26]  Gang Chen,et al.  Modified effective medium formulation for the thermal conductivity of nanocomposites , 2007 .

[27]  N. Koshida,et al.  Precise Thermal Characterization of Confined Nanocrystalline Silicon by a 3ω Method , 2004 .

[28]  C. Grigoropoulos,et al.  Thermal conductivity of amorphous silicon thin films , 2002 .

[29]  Patrick E. Phelan,et al.  SIZE EFFECTS ON THE THERMAL CONDUCTIVITY OF POLYMERS LADEN WITH HIGHLY CONDUCTIVE FILLER PARTICLES , 2001, Proceeding of Heat Transfer and Transport Phenomena in Microscale.

[30]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[31]  J. Morikawa,et al.  Measurement of the thermal diffusivity of thin films by an AC joule-heating method , 1997 .

[32]  S. Nagai,et al.  Thermal diffusivity and conductivity of PMMA/PC blends , 1997 .

[33]  D. Cahill,et al.  Thermal conductivity of a-Si:H thin films. , 1994, Physical review. B, Condensed matter.

[34]  T. Hales The status of the kepler conjecture , 1994 .

[35]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[36]  Rishi Raj,et al.  The effect of particle size on the thermal conductivity of ZnS/diamond composites , 1992 .