Random Čech complexes on Riemannian manifolds

In this paper we study the homology of a random Čech complex generated by a homogeneous Poisson process in a compact Riemannian manifold M. In particular, we focus on the phase transition for “homological connectivity” where the homology of the complex becomes isomorphic to that of M. The results presented in this paper are an important generalization of , from the flat torus to general compact Riemannian manifolds. In addition to proving the statements related to homological connectivity, the methods we develop in this paper can be used as a framework for translating results for random geometric graphs and complexes from the Euclidean setting into the more general Riemannian one.

[1]  Herbert Edelsbrunner,et al.  Expected sizes of Poisson–Delaunay mosaics and their discrete Morse functions , 2016, Advances in Applied Probability.

[2]  Omer Bobrowski,et al.  On the vanishing of homology in random Čech complexes , 2015, Random Struct. Algorithms.

[3]  Katharine Turner Topological Data Analysis , 2017 .

[4]  L. Wasserman Topological Data Analysis , 2016, 1609.08227.

[5]  P. Skraba,et al.  Maximally Persistent Cycles in Random Geometric Complexes , 2015, 1509.04347.

[6]  R. Adler,et al.  Limit Theorems for Point Processes under Geometric Constraints (and Topological Crackle) , 2015, 1503.08416.

[7]  R. Adler,et al.  Random geometric complexes in the thermodynamic regime , 2014, Probability Theory and Related Fields.

[8]  D. Yogeshwaran,et al.  On the topology of random complexes built over stationary point processes. , 2012, 1211.0061.

[9]  Omer Bobrowski,et al.  Crackle: The Homology of Noise , 2014, Discret. Comput. Geom..

[10]  S. Mukherjee,et al.  Topological Consistency via Kernel Estimation , 2014, 1407.5272.

[11]  S. Mukherjee,et al.  The topology of probability distributions on manifolds , 2013, 1307.1123.

[12]  Matthew Kahle Topology of random simplicial complexes: a survey , 2013, 1301.7165.

[13]  Matthew Kahle,et al.  Sharp vanishing thresholds for cohomology of random flag complexes , 2012, 1207.0149.

[14]  Sivaraman Balakrishnan,et al.  Minimax rates for homology inference , 2011, AISTATS.

[15]  Moo K. Chung,et al.  Topological Data Analysis , 2012 .

[16]  R. Adler,et al.  Distance Functions, Critical Points, and the Topology of Random \v{C}ech Complexes , 2011, 1107.4775.

[17]  Stephen Smale,et al.  A Topological View of Unsupervised Learning from Noisy Data , 2011, SIAM J. Comput..

[18]  Matthew Kahle,et al.  Random Geometric Complexes , 2009, Discret. Comput. Geom..

[19]  Elizabeth S. Meckes,et al.  Limit theorems for Betti numbers of random simplicial complexes , 2010 .

[20]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[21]  R. Meshulam,et al.  Homological connectivity of random k‐dimensional complexes , 2006, Random Struct. Algorithms.

[22]  Matthew Kahle,et al.  Topology of random clique complexes , 2006, Discret. Math..

[23]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[24]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..

[25]  Frédéric Chazal,et al.  A Sampling Theory for Compact Sets in Euclidean Space , 2006, SCG '06.

[26]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[27]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[28]  Mathew Penrose,et al.  Random geometric graphs.Vol. 5. , 2003 .

[29]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[30]  V. Gershkovich,et al.  MORSE THEORY FOR MIN-TYPE FUNCTIONS* , 1997 .

[31]  S. Lang Differential and Riemannian Manifolds , 1996 .

[32]  P. Bérard Topics from Riemannian geometry , 1986 .

[33]  Michael Gromov,et al.  Curvature, diameter and betti numbers , 1981 .

[34]  Karsten Grove,et al.  A generalized sphere theorem , 1977 .

[35]  Leopold Flatto,et al.  Random coverings , 1977 .

[36]  R. E. Miles Isotropic random simplices , 1971, Advances in Applied Probability.

[37]  E. N. Gilbert,et al.  Random Plane Networks , 1961 .

[38]  K. Borsuk On the imbedding of systems of compacta in simplicial complexes , 1948 .

[39]  H. Hopf,et al.  Ueber den Begriff der vollständigen differentialgeometrischen Fläche , 1931 .

[40]  I. Holopainen Riemannian Geometry , 1927, Nature.

[41]  R. Ho Algebraic Topology , 2022 .