CholecTriplet2022: Show me a tool and tell me the triplet - an endoscopic vision challenge for surgical action triplet detection

[1]  Jingjing Meng,et al.  Forest Graph Convolutional Network for Surgical Action Triplet Recognition in Endoscopic Videos , 2022, IEEE Transactions on Circuits and Systems for Video Technology.

[2]  N. Padoy,et al.  Computer vision in surgery: from potential to clinical value , 2022, npj Digital Medicine.

[3]  Angelica I. Avilés-Rivero,et al.  Why Deep Surgical Models Fail?: Revisiting Surgical Action Triplet Recognition through the Lens of Robustness , 2022, ArXiv.

[4]  Q. Dou,et al.  AutoLaparo: A New Dataset of Integrated Multi-tasks for Image-guided Surgical Automation in Laparoscopic Hysterectomy , 2022, MICCAI.

[5]  N. Padoy,et al.  Data Splits and Metrics for Method Benchmarking on Surgical Action Triplet Datasets , 2022, ArXiv.

[6]  Helena R. Torres,et al.  CholecTriplet2021: A benchmark challenge for surgical action triplet recognition , 2022, Medical Image Anal..

[7]  Shanlin Yang,et al.  SIRNet: Fine-Grained Surgical Interaction Recognition , 2022, IEEE Robotics and Automation Letters.

[8]  M. Ryoo,et al.  MS-TCT: Multi-Scale Temporal ConvTransformer for Action Detection , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Frederic Z. Zhang,et al.  Efficient Two-Stage Detection of Human-Object Interactions with a Novel Unary-Pairwise Transformer , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Li Dong,et al.  Swin Transformer V2: Scaling Up Capacity and Resolution , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Claudio Ravasio Martin Huber,et al.  2020 CATARACTS Semantic Segmentation Challenge , 2021, ArXiv.

[12]  Bin Dong,et al.  VisDrone-MOT2020: The Vision Meets Drone Multiple Object Tracking Challenge Results , 2020, ECCV Workshops.

[13]  Pheng-Ann Heng,et al.  Comparative Validation of Machine Learning Algorithms for Surgical Workflow and Skill Analysis with the HeiChole Benchmark , 2021, Medical Image Anal..

[14]  N. Padoy,et al.  Rendezvous: Attention Mechanisms for the Recognition of Surgical Action Triplets in Endoscopic Videos , 2021, Medical Image Anal..

[15]  Stephen Lin,et al.  Video Swin Transformer , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Shuguang Cui,et al.  Shallow Feature Matters for Weakly Supervised Object Localization , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Julien Mairal,et al.  Emerging Properties in Self-Supervised Vision Transformers , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[18]  Riccardo Muradore,et al.  The SARAS Endoscopic Surgeon Action Detection (ESAD) dataset: Challenges and methods , 2021, ArXiv.

[19]  Mobarakol Islam,et al.  Learning Domain Adaptation with Model Calibration for Surgical Report Generation in Robotic Surgery , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[20]  Pheng-Ann Heng,et al.  Temporal Memory Relation Network for Workflow Recognition From Surgical Video , 2021, IEEE Transactions on Medical Imaging.

[21]  Mamoru Mitsuishi,et al.  MIcro-Surgical Anastomose Workflow recognition challenge report , 2021, Comput. Methods Programs Biomed..

[22]  Pheng-Ann Heng,et al.  Trans-SVNet: Accurate Phase Recognition from Surgical Videos via Hybrid Embedding Aggregation Transformer , 2021, MICCAI.

[23]  Tomoaki Yoshinaga,et al.  QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Jian Sun,et al.  End-to-End Human Object Interaction Detection with HOI Transformer , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  S. T. Kim,et al.  OperA: Attention-Regularized Transformers for Surgical Phase Recognition , 2021, MICCAI.

[26]  Lena Maier-Hein,et al.  Endoscopic Vision Challenge 2021 , 2021 .

[27]  Lena Maier-Hein,et al.  Surgical Visual Domain Adaptation: Results from the MICCAI 2020 SurgVisDom Challenge , 2021, ArXiv.

[28]  N. Padoy,et al.  Multi-task temporal convolutional networks for joint recognition of surgical phases and steps in gastric bypass procedures , 2021, International Journal of Computer Assisted Radiology and Surgery.

[29]  Heng Wang,et al.  Is Space-Time Attention All You Need for Video Understanding? , 2021, ICML.

[30]  C.-S. Shih,et al.  CholecSeg8k: A Semantic Segmentation Dataset for Laparoscopic Cholecystectomy Based on Cholec80 , 2020, ArXiv.

[31]  Yu Qiao,et al.  Attention-Driven Dynamic Graph Convolutional Network for Multi-label Image Recognition , 2020, ECCV.

[32]  Klaus H. Maier-Hein,et al.  Comparative validation of multi-instance instrument segmentation in endoscopy: Results of the ROBUST-MIS 2019 challenge , 2020, Medical Image Anal..

[33]  S. Gelly,et al.  An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale , 2020, ICLR.

[34]  Hasan Sajid,et al.  m2caiSeg: Semantic Segmentation of Laparoscopic Images using Convolutional Neural Networks , 2020, ArXiv.

[35]  Toktam Khatibi,et al.  Proposing novel methods for gynecologic surgical action recognition on laparoscopic videos , 2020, Multimedia Tools and Applications.

[36]  Jacques Marescaux,et al.  Recognition of Instrument-Tissue Interactions in Endoscopic Videos via Action Triplets , 2020, MICCAI.

[37]  Peter M. Full,et al.  Heidelberg colorectal data set for surgical data science in the sensor operating room , 2020, Scientific Data.

[38]  Nassir Navab,et al.  TeCNO: Surgical Phase Recognition with Multi-Stage Temporal Convolutional Networks , 2020, MICCAI.

[39]  Daniel Cremers,et al.  MOT20: A benchmark for multi object tracking in crowded scenes , 2020, ArXiv.

[40]  Kévin Le Mut,et al.  Endoscopic Vision Challenge , 2020 .

[41]  Nicolas Martin,et al.  Assisted phase and step annotation for surgical videos , 2020, International Journal of Computer Assisted Radiology and Surgery.

[42]  Mathias Unberath,et al.  CAI4CAI: The Rise of Contextual Artificial Intelligence in Computer-Assisted Interventions , 2019, Proceedings of the IEEE.

[43]  L. Maier-Hein,et al.  Methods and open-source toolkit for analyzing and visualizing challenge results , 2019, Scientific reports.

[44]  Lena Maier-Hein,et al.  BIAS: Transparent reporting of biomedical image analysis challenges , 2019, Medical Image Analysis.

[45]  Danail Stoyanov,et al.  CaDIS: Cataract Dataset for Image Segmentation , 2019, ArXiv.

[46]  Andreas Geiger,et al.  MOTS: Multi-Object Tracking and Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[47]  Satoshi Kondo,et al.  CATARACTS: Challenge on automatic tool annotation for cataRACT surgery , 2019, Medical Image Anal..

[48]  Jitendra Malik,et al.  SlowFast Networks for Video Recognition , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[49]  Didier Mutter,et al.  Weakly supervised convolutional LSTM approach for tool tracking in laparoscopic videos , 2018, International Journal of Computer Assisted Radiology and Surgery.

[50]  Didier Mutter,et al.  Learning from a tiny dataset of manual annotations: a teacher/student approach for surgical phase recognition , 2018, ArXiv.

[51]  Song-Chun Zhu,et al.  Learning Human-Object Interactions by Graph Parsing Neural Networks , 2018, ECCV.

[52]  Keno März,et al.  Toward a standard ontology of surgical process models , 2018, International Journal of Computer Assisted Radiology and Surgery.

[53]  Gwénolé Quellec,et al.  Monitoring tool usage in surgery videos using boosted convolutional and recurrent neural networks , 2018, Medical Image Anal..

[54]  Sebastian Bodenstedt,et al.  Temporal coherence-based self-supervised learning for laparoscopic workflow analysis , 2018, OR 2.0/CARE/CLIP/ISIC@MICCAI.

[55]  Didier Mutter,et al.  Weakly-Supervised Learning for Tool Localization in Laparoscopic Videos , 2018, CVII-STENT/LABELS@MICCAI.

[56]  Chi-Wing Fu,et al.  SV-RCNet: Workflow Recognition From Surgical Videos Using Recurrent Convolutional Network , 2018, IEEE Transactions on Medical Imaging.

[57]  Jonathan Krause,et al.  Tool Detection and Operative Skill Assessment in Surgical Videos Using Region-Based Convolutional Neural Networks , 2018, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[58]  Chen Sun,et al.  Rethinking Spatiotemporal Feature Learning: Speed-Accuracy Trade-offs in Video Classification , 2017, ECCV.

[59]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[60]  Cordelia Schmid,et al.  AVA: A Video Dataset of Spatio-Temporally Localized Atomic Visual Actions , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[61]  Andrew Zisserman,et al.  Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Kaiming He,et al.  Detecting and Recognizing Human-Object Interactions , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[63]  Jia Deng,et al.  Learning to Detect Human-Object Interactions , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[64]  Nassir Navab,et al.  The TUM LapChole dataset for the M2CAI 2016 workflow challenge , 2016, ArXiv.

[65]  Svetlana Lazebnik,et al.  Learning Models for Actions and Person-Object Interactions with Transfer to Question Answering , 2016, ECCV.

[66]  Ali Farhadi,et al.  Hollywood in Homes: Crowdsourcing Data Collection for Activity Understanding , 2016, ECCV.

[67]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[68]  Yan Wang,et al.  Object Skeleton Extraction in Natural Images by Fusing Scale-Associated Deep Side Outputs , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[69]  Andru Putra Twinanda,et al.  EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos , 2016, IEEE Transactions on Medical Imaging.

[70]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[71]  Jiaxuan Wang,et al.  HICO: A Benchmark for Recognizing Human-Object Interactions in Images , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[72]  Brian B. Avants,et al.  The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) , 2015, IEEE Transactions on Medical Imaging.

[73]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[74]  Rüdiger Dillmann,et al.  LapOntoSPM: an ontology for laparoscopic surgeries and its application to surgical phase recognition , 2015, International Journal of Computer Assisted Radiology and Surgery.

[75]  Jitendra Malik,et al.  Visual Semantic Role Labeling , 2015, ArXiv.

[76]  Germain Forestier,et al.  Automatic phase prediction from low-level surgical activities , 2015, International Journal of Computer Assisted Radiology and Surgery.

[77]  Jiri Matas,et al.  A Novel Performance Evaluation Methodology for Single-Target Trackers , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[79]  Trevor Darrell,et al.  Long-term recurrent convolutional networks for visual recognition and description , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[80]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[81]  Rüdiger Dillmann,et al.  Knowledge-Driven Formalization of Laparoscopic Surgeries for Rule-Based Intraoperative Context-Aware Assistance , 2014, IPCAI.

[82]  Fei-Fei Li,et al.  Large-Scale Video Classification with Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[83]  Andrew Zisserman,et al.  Two-Stream Convolutional Networks for Action Recognition in Videos , 2014, NIPS.

[84]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[85]  Pierre Jannin,et al.  Surgical process modelling: a review , 2014, International Journal of Computer Assisted Radiology and Surgery.

[86]  Mubarak Shah,et al.  UCF101: A Dataset of 101 Human Actions Classes From Videos in The Wild , 2012, ArXiv.

[87]  Luc Van Gool,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.

[88]  Thomas Neumuth,et al.  Linking Top-Level Ontologies and Surgical Workflows , 2006 .

[89]  T. Neumuth,et al.  Structured recording of intraoperative surgical workflows , 2006, SPIE Medical Imaging.

[90]  Henry C. Lin,et al.  Towards automatic skill evaluation: Detection and segmentation of robot-assisted surgical motions , 2006, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[91]  Marie T. Egan,et al.  Deliberate Perioperative Systems Design Improves Operating Room Throughput , 2005, Anesthesiology.

[92]  Christos Trantakis,et al.  ENT-surgical workflow as an instrument to assess the efficiency of technological developments in medicine , 2005 .

[93]  Cordelia Schmid,et al.  The 2005 PASCAL Visual Object Classes Challenge , 2005, MLCW.

[94]  H. Fu,et al.  Instrument-tissue Interaction Quintuple Detection in Surgery Videos , 2022, MICCAI.

[95]  Danail Stoyanov,et al.  OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis , 2018, Lecture Notes in Computer Science.

[96]  Amir Roshan Zamir,et al.  Action Recognition in Realistic Sports Videos , 2014 .

[97]  Nassir Navab,et al.  Motif Discovery in OR Sensor Data with Application to Surgical Workflow Analysis and Activity Detection , 2009 .

[98]  Eduard Petlenkov,et al.  Recognition of the Surgeon's Motions During Endoscopic Operation by Statistics Based Algorithm and Neural Networks Based ANARX Models , 2008 .