Prefrontal circuit organization for executive control

The essential role of executive control is to select the most appropriate behavior among other candidates depending on the sensory information (exogenous information) and on the subject's internal state (endogenous information). Here I review series of the evidence implicating that the rodent prefrontal cortex (PFC) evaluates and compares the expected outcome for candidate actions that are automatically primed by exogenous and endogenous information, and selects the most appropriate action while inhibiting the others, with different PFC subregions contributing to distinct aspects of the computation via differential recruitments of the distributed networks. The recurrent nature of the PFC networks further facilitates the computation by integrating bottom-up signals over a long timescale. I also overview the local circuit organization in the PFC, where vasoactive intestinal peptide-positive (VIP) GABAergic interneurons are tightly linked with the cholinergic system and play significant roles in regulating executive control signals. The empirical evidence inspires the disinhibitory module hypothesis of the PFC organization that a group of pyramidal neurons and interneurons forms a disinhibitory module with similar task-variable selectivity in the PFC, and long-range inputs and neuromodulations in these modules exert a distributed gain modulation of the ongoing executive control signals by adjusting VIP neuron activity.

[1]  J. Changeux,et al.  Nicotine reverses hypofrontality in animal models of addiction and schizophrenia , 2017, Nature Medicine.

[2]  Jung Hoon Sul,et al.  Role of Striatum in Updating Values of Chosen Actions , 2009, The Journal of Neuroscience.

[3]  M. Scanziani,et al.  Inhibition of Inhibition in Visual Cortex: The Logic of Connections Between Molecularly Distinct Interneurons , 2013, Nature Neuroscience.

[4]  Z. Rossetti,et al.  Noradrenaline and Dopamine Elevations in the Rat Prefrontal Cortex in Spatial Working Memory , 2005, The Journal of Neuroscience.

[5]  C. Jacobsen,et al.  Studies of cerebral function in primates. I. The functions of the frontal association areas in monkeys. , 1936 .

[6]  O. Yizhar,et al.  A Functional Gradient in the Rodent Prefrontal Cortex Supports Behavioral Inhibition , 2017, Current Biology.

[7]  S. Manita,et al.  A Top-Down Cortical Circuit for Accurate Sensory Perception , 2015, Neuron.

[8]  Daeyeol Lee,et al.  Role of rodent secondary motor cortex in value-based action selection , 2011, Nature Neuroscience.

[9]  G. Stuart,et al.  Cholinergic Inhibition of Neocortical Pyramidal Neurons , 2005, The Journal of Neuroscience.

[10]  JaneR . Taylor,et al.  Going and stopping: dichotomies in behavioral control by the prefrontal cortex , 2016, Nature Neuroscience.

[11]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[12]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.

[13]  J. Kleim,et al.  The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture. , 2011, Cerebral cortex.

[14]  A. Arnsten,et al.  Nicotinic α4β2 Cholinergic Receptor Influences on Dorsolateral Prefrontal Cortical Neuronal Firing during a Working Memory Task , 2017, The Journal of Neuroscience.

[15]  H. Eichenbaum On the Integration of Space, Time, and Memory , 2017, Neuron.

[16]  Hatim A. Zariwala,et al.  Neural correlates, computation and behavioural impact of decision confidence , 2008, Nature.

[17]  Bradley R Postle,et al.  The dependence of span and delayed-response performance on prefrontal cortex , 1999, Neuropsychologia.

[18]  Jerald D. Kralik,et al.  Representation of Attended Versus Remembered Locations in Prefrontal Cortex , 2004, PLoS biology.

[19]  E. Bizzi,et al.  Responses to spinal microstimulation in the chronically spinalized rat and their relationship to spinal systems activated by low threshold cutaneous stimulation , 1999, Experimental Brain Research.

[20]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[21]  M. Walton,et al.  Separate neural pathways process different decision costs , 2006, Nature Neuroscience.

[22]  Gary Aston-Jones,et al.  Prefrontal neurons encode context-based response execution and inhibition in reward seeking and extinction , 2015, Proceedings of the National Academy of Sciences.

[23]  K. Tye,et al.  Architectural Representation of Valence in the Limbic System , 2016, Neuropsychopharmacology.

[24]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[25]  M. Siniscalchi,et al.  Fast and slow transitions in frontal ensemble activity during flexible sensorimotor behavior , 2016, Nature Neuroscience.

[26]  M. Stryker,et al.  A Cortical Circuit for Gain Control by Behavioral State , 2014, Cell.

[27]  Ralf D. Wimmer,et al.  Thalamic amplification of cortical connectivity sustains attentional control , 2017, Nature.

[28]  B. Roth,et al.  Chemogenetic tools to interrogate brain functions. , 2014, Annual review of neuroscience.

[29]  Mark Laubach,et al.  Top-Down Control of Motor Cortex Ensembles by Dorsomedial Prefrontal Cortex , 2006, Neuron.

[30]  Y. Kubota,et al.  Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  Celine Mateo,et al.  Motor Control by Sensory Cortex , 2010, Science.

[32]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[33]  J. Fuster,et al.  Delayed-matching and delayed-response deficit from cooling dorsolateral prefrontal cortex in monkeys. , 1976, Journal of comparative and physiological psychology.

[34]  P. Kalivas,et al.  Prefrontal Glutamate Release into the Core of the Nucleus Accumbens Mediates Cocaine-Induced Reinstatement of Drug-Seeking Behavior , 2003, The Journal of Neuroscience.

[35]  Robert T. Knight,et al.  Contributions of Subregions of the Prefrontal Cortex to Working Memory: Evidence from Brain Lesions in Humans , 2002, Journal of Cognitive Neuroscience.

[36]  J. Seamans,et al.  The principal features and mechanisms of dopamine modulation in the prefrontal cortex , 2004, Progress in Neurobiology.

[37]  Yasushi Miyashita,et al.  Neurodynamics of Cognitive Set Shifting in Monkey Frontal Cortex and Its Causal Impact on Behavioral Flexibility , 2012, Journal of Cognitive Neuroscience.

[38]  Nicholas N. Foster,et al.  The mouse cortico-striatal projectome , 2016, Nature Neuroscience.

[39]  R. Costa,et al.  Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions , 2013, Nature Communications.

[40]  G. Quirk,et al.  Gating of Fear in Prelimbic Cortex by Hippocampal and Amygdala Inputs , 2012, Neuron.

[41]  Allan R. Jones,et al.  A mesoscale connectome of the mouse brain , 2014, Nature.

[42]  C. Mathis,et al.  The Lateral Habenula as a Relay of Cortical Information to Process Working Memory , 2016, Cerebral cortex.

[43]  E. Kuramoto,et al.  Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron‐tracing study using virus vectors , 2017, The Journal of comparative neurology.

[44]  R. Yuste,et al.  Opening Holes in the Blanket of Inhibition: Localized Lateral Disinhibition by VIP Interneurons , 2016, The Journal of Neuroscience.

[45]  A. Baddeley Working memory: theories, models, and controversies. , 2012, Annual review of psychology.

[46]  M. Botvinick,et al.  Conflict monitoring and cognitive control. , 2001, Psychological review.

[47]  C. Woolsey,et al.  The orbitofrontal cortex and its connections with the mediodorsal nucleus in rabbit, sheep and cat. , 1948, Research publications - Association for Research in Nervous and Mental Disease.

[48]  R. Desimone,et al.  Neural Mechanisms of Visual Working Memory in Prefrontal Cortex of the Macaque , 1996, The Journal of Neuroscience.

[49]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[50]  R. Vertes Differential projections of the infralimbic and prelimbic cortex in the rat , 2004, Synapse.

[51]  M. Higley,et al.  Acetylcholine as a Neuromodulator: Cholinergic Signaling Shapes Nervous System Function and Behavior , 2012, Neuron.

[52]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[53]  C. Leonard,et al.  The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. , 1969, Brain research.

[54]  Angelica Foggetti,et al.  Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive flexibility , 2015, Scientific Reports.

[55]  Su-Jeong Kim,et al.  Inhibitory networks of the amygdala for emotional memory , 2013, Front. Neural Circuits.

[56]  Fan Wang,et al.  A Circuit for Motor Cortical Modulation of Auditory Cortical Activity , 2013, The Journal of Neuroscience.

[57]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[58]  Ian R. Wickersham,et al.  Cortical representations of olfactory input by trans-synaptic tracing , 2011, Nature.

[59]  P. Celada,et al.  Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. , 2004, Cerebral cortex.

[60]  J. Price,et al.  The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. , 2000, Cerebral cortex.

[61]  Y. Kawaguchi,et al.  Selective cholinergic modulation of cortical GABAergic cell subtypes. , 1997, Journal of neurophysiology.

[62]  M. Rasch,et al.  Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band Oscillations , 2017, Neuron.

[63]  Mriganka Sur,et al.  Distinct roles of visual, parietal, and frontal motor cortices in memory-guided sensorimotor decisions , 2016, eLife.

[64]  J. Fuster Prefrontal Cortex , 2018 .

[65]  Yasushi Miyashita,et al.  Cognitive Set Reconfiguration Signaled by Macaque Posterior Parietal Neurons , 2009, Neuron.

[66]  G. Fishell,et al.  A disinhibitory circuit mediates motor integration in the somatosensory cortex , 2013, Nature Neuroscience.

[67]  R. Vertes,et al.  Projections of the medial orbital and ventral orbital cortex in the rat , 2011, The Journal of comparative neurology.

[68]  C. Constantinidis,et al.  Cholinergic modulation of working memory activity in primate prefrontal cortex. , 2011, Journal of neurophysiology.

[69]  R. Marek,et al.  Author Correction: Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear , 2018, Nature Neuroscience.

[70]  P. Goldman-Rakic,et al.  Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic "scotomas" , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  R. Roth,et al.  Dopamine and Spatial Working Memory in Rats and Monkeys: Pharmacological Reversal of Stress-Induced Impairment , 1996, The Journal of Neuroscience.

[72]  M. Bartos,et al.  Impaired fast-spiking interneuron function in a genetic mouse model of depression , 2015, eLife.

[73]  R. Mooney,et al.  A synaptic and circuit basis for corollary discharge in the auditory cortex , 2014, Nature.

[74]  W. Gan,et al.  Branch-specific dendritic Ca2+ spikes cause persistent synaptic plasticity , 2015, Nature.

[75]  Xiao-Jing Wang,et al.  The importance of mixed selectivity in complex cognitive tasks , 2013, Nature.

[76]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[77]  E. Rolls Limbic systems for emotion and for memory, but no single limbic system , 2015, Cortex.

[78]  J. Peters,et al.  Infralimbic Prefrontal Cortex Is Responsible for Inhibiting Cocaine Seeking in Extinguished Rats , 2008, The Journal of Neuroscience.

[79]  M MISHKIN,et al.  Effects of small frontal lesions on delayed alternation in monkeys. , 1957, Journal of neurophysiology.

[80]  R. Romo,et al.  Neuronal correlates of parametric working memory in the prefrontal cortex , 1999, Nature.

[81]  Joshua I. Sanders,et al.  Cortical interneurons that specialize in disinhibitory control , 2013, Nature.

[82]  Donald A. Norman,et al.  Attention to Action , 1986 .

[83]  J. Trachtenberg,et al.  An inhibitory pull-push circuit in frontal cortex , 2017, Nature Neuroscience.

[84]  K. Deisseroth,et al.  Prefrontal Parvalbumin Neurons in Control of Attention , 2016, Cell.

[85]  R. Costa,et al.  Dopamine neuron activity before action initiation gates and invigorates future movements , 2018, Nature.

[86]  S. Everling,et al.  Muscarinic M1 Receptor Overstimulation Disrupts Working Memory Activity for Rules in Primate Prefrontal Cortex , 2018, Neuron.

[87]  J. Peters,et al.  Extinction circuits for fear and addiction overlap in prefrontal cortex. , 2009, Learning & memory.

[88]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[89]  Arthur W. Toga,et al.  Neural Networks of the Mouse Neocortex , 2014, Cell.

[90]  Lief E. Fenno,et al.  The development and application of optogenetics. , 2011, Annual review of neuroscience.

[91]  Y. Dan,et al.  Dissection of Cortical Microcircuits by Single-Neuron Stimulation In Vivo , 2012, Current Biology.

[92]  Christophe D. Proulx,et al.  Reward processing by the lateral habenula in normal and depressive behaviors , 2014, Nature Neuroscience.

[93]  Leslie G. Ungerleider,et al.  An area specialized for spatial working memory in human frontal cortex. , 1998, Science.

[94]  Erika E Fanselow,et al.  Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. , 2008, Journal of neurophysiology.

[95]  Dohoung Kim,et al.  Distinct Roles of Parvalbumin- and Somatostatin-Expressing Interneurons in Working Memory , 2016, Neuron.

[96]  Huibert D. Mansvelder,et al.  Layer-Specific Modulation of the Prefrontal Cortex by Nicotinic Acetylcholine Receptors , 2012, Cerebral cortex.

[97]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[98]  B. Milner,et al.  Frontal lobes and the temporal organization of memory. , 1985, Human neurobiology.

[99]  G. Schoenbaum,et al.  What the orbitofrontal cortex does not do , 2015, Nature Neuroscience.

[100]  R. Passingham,et al.  Active maintenance in prefrontal area 46 creates distractor-resistant memory , 2002, Nature Neuroscience.

[101]  Nicolas Singewald,et al.  Prefrontal inputs to the amygdala instruct fear extinction memory formation , 2015, Science Advances.

[102]  Denis Pare,et al.  Amygdala microcircuits mediating fear expression and extinction , 2012, Current Opinion in Neurobiology.

[103]  Tsukasa Kamigaki Dissecting executive control circuits with neuron types , 2019, Neuroscience Research.

[104]  B. Kolb,et al.  Do rats have a prefrontal cortex? , 2003, Behavioural Brain Research.

[105]  M. Sarter,et al.  Article Prefrontal Acetylcholine Release Controls Cue Detection on Multiple Timescales , 2022 .

[106]  A. Romanides,et al.  Glutamatergic and dopaminergic afferents to the prefrontal cortex regulate spatial working memory in rats , 1999, Neuroscience.

[107]  Xiao-Jing Wang,et al.  A dendritic disinhibitory circuit mechanism for pathway-specific gating , 2016, Nature Communications.

[108]  R. Marek,et al.  Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction , 2018, Nature Neuroscience.

[109]  M. Baxter,et al.  Cholinergic modulation of a specific memory function of prefrontal cortex , 2011, Nature Neuroscience.

[110]  Jung Hoon Sul,et al.  Distinct Roles of Rodent Orbitofrontal and Medial Prefrontal Cortex in Decision Making , 2010, Neuron.

[111]  Alice M Stamatakis,et al.  Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance , 2012, Nature Neuroscience.

[112]  J. Staiger,et al.  Subcellular Targeting of VIP Boutons in Mouse Barrel Cortex is Layer-Dependent and not Restricted to Interneurons , 2017, Cerebral cortex.

[113]  R. Romo,et al.  Neural codes for perceptual discrimination in primary somatosensory cortex , 2005, Nature Neuroscience.

[114]  D. McCormick,et al.  Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex , 2016, Nature Communications.

[115]  Eric A. Yttri,et al.  Opponent and bidirectional control of movement velocity in the basal ganglia , 2016, Nature.

[116]  David J. Freedman,et al.  A hierarchy of intrinsic timescales across primate cortex , 2014, Nature Neuroscience.

[117]  G. Quirk,et al.  Sustained Conditioned Responses in Prelimbic Prefrontal Neurons Are Correlated with Fear Expression and Extinction Failure , 2009, The Journal of Neuroscience.

[118]  J. Price,et al.  The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain–prefrontal cortex topography , 1992, The Journal of comparative neurology.

[119]  T. Robbins,et al.  Central cholinergic systems and cognition. , 1997, Annual review of psychology.

[120]  R. Passingham,et al.  The prefrontal cortex: response selection or maintenance within working memory? , 2000, 5th IEEE EMBS International Summer School on Biomedical Imaging, 2002..

[121]  V. Brown,et al.  Rodent models of prefrontal cortical function , 2002, Trends in Neurosciences.

[122]  Kristin Branson,et al.  Cortex commands the performance of skilled movement , 2015, eLife.

[123]  T. Robbins,et al.  Putting a spin on the dorsal–ventral divide of the striatum , 2004, Trends in Neurosciences.

[124]  J. Rossier,et al.  Selective Excitation of Subtypes of Neocortical Interneurons by Nicotinic Receptors , 1999, The Journal of Neuroscience.

[125]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[126]  B. Postle,et al.  The cognitive neuroscience of working memory. , 2007, Annual review of psychology.

[127]  Y. Kawaguchi,et al.  Recurrent Connection Patterns of Corticostriatal Pyramidal Cells in Frontal Cortex , 2006, The Journal of Neuroscience.

[128]  Dino J. Levy,et al.  The root of all value: a neural common currency for choice , 2012, Current Opinion in Neurobiology.

[129]  G. Schoenbaum,et al.  Orbitofrontal cortex and basolateral amygdala encode expected outcomes during learning , 1998, Nature Neuroscience.

[130]  K. C. Anderson,et al.  Single neurons in prefrontal cortex encode abstract rules , 2001, Nature.

[131]  Yasuo Kawaguchi,et al.  Heterogeneity of phasic cholinergic signaling in neocortical neurons. , 2007, Journal of neurophysiology.

[132]  R. Lemon Descending pathways in motor control. , 2008, Annual review of neuroscience.

[133]  Geoffrey Schoenbaum,et al.  The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards , 2008, Nature.

[134]  J. Jonides,et al.  Storage and executive processes in the frontal lobes. , 1999, Science.

[135]  Y. Dan,et al.  Delay Activity of Specific Prefrontal Interneuron Subtypes Modulates Memory-Guided Behavior , 2017, Nature Neuroscience.

[136]  Steven P. Wise,et al.  Forward frontal fields: phylogeny and fundamental function , 2008, Trends in Neurosciences.

[137]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[138]  R. Vertes,et al.  Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat , 2007, Brain Structure and Function.

[139]  W. Singer,et al.  Neuronal Dynamics and Neuropsychiatric Disorders: Toward a Translational Paradigm for Dysfunctional Large-Scale Networks , 2012, Neuron.

[140]  Adam C. Riggall,et al.  The Relationship between Working Memory Storage and Elevated Activity as Measured with Functional Magnetic Resonance Imaging , 2012, The Journal of Neuroscience.

[141]  Stefano Fusi,et al.  Hippocampal-prefrontal input supports spatial encoding in working memory , 2015, Nature.

[142]  Renee Hoch,et al.  Gamma Rhythms Link Prefrontal Interneuron Dysfunction with Cognitive Inflexibility in Dlx5/6 +/− Mice , 2015, Neuron.

[143]  Katherine E. Conen,et al.  Orbitofrontal Cortex: A Neural Circuit for Economic Decisions , 2017, Neuron.

[144]  Michael Z. Lin,et al.  Genetically encoded indicators of neuronal activity , 2016, Nature Neuroscience.

[145]  R. Kesner,et al.  An analysis of rat prefrontal cortex in mediating executive function , 2011, Neurobiology of Learning and Memory.

[146]  Daeyeol Lee,et al.  Beyond working memory: the role of persistent activity in decision making , 2010, Trends in Cognitive Sciences.

[147]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[148]  Bingni W. Brunton,et al.  Cortical and Subcortical Contributions to Short-Term Memory for Orienting Movements , 2015, Neuron.

[149]  Joseph E LeDoux,et al.  Fear Conditioning Enhances Different Temporal Components of Tone-Evoked Spike Trains in Auditory Cortex and Lateral Amygdala , 1997, Neuron.

[150]  Armin Schnider,et al.  Spontaneous confabulation and the adaptation of thought to ongoing reality , 2003, Nature Reviews Neuroscience.

[151]  C. Cepeda,et al.  Basolateral Amygdala to Orbitofrontal Cortex Projections Enable Cue-Triggered Reward Expectations , 2017, The Journal of Neuroscience.

[152]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[153]  R. LaLumiere,et al.  Glutamate Release in the Nucleus Accumbens Core Is Necessary for Heroin Seeking , 2008, The Journal of Neuroscience.

[154]  Joseph E. LeDoux,et al.  Emotional memory systems in the brain , 1993, Behavioural Brain Research.

[155]  Z. Mainen,et al.  Distinct Sources of Deterministic and Stochastic Components of Action Timing Decisions in Rodent Frontal Cortex , 2016, Neuron.

[156]  J. Kalaska,et al.  Neural mechanisms for interacting with a world full of action choices. , 2010, Annual review of neuroscience.

[157]  I. Nimmo-Smith,et al.  Hypofrontality in schizophrenia: a meta‐analysis of functional imaging studies , 2004, Acta psychiatrica Scandinavica.

[158]  R. Clem,et al.  Pathway-Selective Adjustment of Prefrontal-Amygdala Transmission during Fear Encoding , 2014, The Journal of Neuroscience.

[159]  Wei-Cheng Chang,et al.  Organization of long-range inputs and outputs of frontal cortex for top-down control , 2016, Nature Neuroscience.

[160]  A. Allport,et al.  Task switching and the measurement of “switch costs” , 2000, Psychological research.

[161]  Yasushi Miyashita,et al.  Neuronal Signal Dynamics during Preparation and Execution for Behavioral Shifting in Macaque Posterior Parietal Cortex , 2011, Journal of Cognitive Neuroscience.

[162]  H. Uylings,et al.  Qualitative and quantitative comparison of the prefrontal cortex in rat and in primates, including humans. , 1990, Progress in brain research.

[163]  Y. Dan,et al.  Long-range and local circuits for top-down modulation of visual cortex processing , 2014, Science.

[164]  Johannes J. Letzkus,et al.  Long-Range Connectivity Defines Behavioral Specificity of Amygdala Neurons , 2014, Neuron.

[165]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[166]  Craig S. Chapman,et al.  Decision-making in sensorimotor control , 2018, Nature Reviews Neuroscience.

[167]  T. Albright,et al.  Efficient Discrimination of Temporal Patterns by Motion-Sensitive Neurons in Primate Visual Cortex , 1998, Neuron.

[168]  J. Gordon,et al.  Thalamic projections sustain prefrontal activity during working memory maintenance , 2017, Nature Neuroscience.

[169]  L. Looger,et al.  A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons , 2016, Neuron.

[170]  James L. McClelland,et al.  On the control of automatic processes: a parallel distributed processing account of the Stroop effect. , 1990, Psychological review.

[171]  B. Balleine,et al.  Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning , 2004, The European journal of neuroscience.

[172]  L. Nadel,et al.  Viewpoints: how the hippocampus contributes to memory, navigation and cognition , 2017, Nature Neuroscience.

[173]  Hideaki Itoh,et al.  Streamlined sensory motor communication through cortical reciprocal connectivity in a visually guided eye movement task , 2018, Nature Communications.

[174]  J. Price,et al.  The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat , 1977, The Journal of comparative neurology.

[175]  Miao He,et al.  Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism , 2017, Cell.

[176]  D. Lewis,et al.  Cortical inhibitory neurons and schizophrenia , 2005, Nature Reviews Neuroscience.

[177]  N. Tamamaki,et al.  Long-Range GABAergic Connections Distributed throughout the Neocortex and their Possible Function , 2010, Front. Neurosci..

[178]  Zachary F Mainen,et al.  Neural antecedents of self-initiated actions in secondary motor cortex , 2014, Nature Neuroscience.

[179]  H. Groenewegen Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography , 1988, Neuroscience.

[180]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.