Particle Systems for Efficient and Accurate High-Order Finite Element Visualization

Visualization has become an important component of the simulation pipeline, providing scientists and engineers a visual intuition of their models. Simulations that make use of the high-order finite element method for spatial subdivision, however, present a challenge to conventional isosurface visualization techniques. High-order finite element isosurfaces are often defined by basis functions in reference space, which give rise to a world-space solution through a coordinate transformation, which does not necessarily have a closed-form inverse. Therefore, world-space isosurface rendering methods such as marching cubes and ray tracing must perform a nested root finding, which is computationally expensive. We thus propose visualizing these isosurfaces with a particle system. We present a framework that allows particles to sample an isosurface in reference space, avoiding the costly inverse mapping of positions from world space when evaluating the basis functions. The distribution of particles across the reference space isosurface is controlled by geometric information from the world-space isosurface such as the surface gradient and curvature. The resulting particle distributions can be distributed evenly or adapted to accommodate world-space surface features. This provides compact, efficient, and accurate isosurface representations of these challenging data sets.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  S. Sherwin,et al.  Mesh generation in curvilinear domains using high‐order elements , 2002 .

[3]  A. James Stewart,et al.  Curvature-Dependent Triangulation of Implicit Surfaces , 2001, IEEE Computer Graphics and Applications.

[4]  P. Shirley,et al.  A polygonal approximation to direct scalar volume rendering , 1990, VVS.

[5]  Martin Kraus,et al.  Hardware-based ray casting for tetrahedral meshes , 2003, IEEE Visualization, 2003. VIS 2003..

[6]  John C. Hart,et al.  A programmable particle system framework for shape modeling , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[7]  Luiz Velho,et al.  Physically-based methods for polygonization of implicit surfaces , 1992 .

[8]  Ross T. Whitaker,et al.  Robust particle systems for curvature dependent sampling of implicit surfaces , 2005, International Conference on Shape Modeling and Applications 2005 (SMI' 05).

[9]  Spencer J. Sherwin,et al.  Nonlinear particle tracking for high-order elements , 2001 .

[10]  Matthias Zwicker,et al.  3 Ideal Resampling 3 . 1 Sampling and Aliasing , 2022 .

[11]  Matthias Zwicker,et al.  Perspective Accurate Splatting , 2004, Graphics Interface.

[12]  Akio Koide,et al.  An Efficient Method of Triangulating Equi-Valued Surfaces by Using Tetrahedral Cells , 1991 .

[13]  Turner Whitted,et al.  A 3-dimensional representation for fast rendering of complex scenes , 1980, SIGGRAPH '80.

[14]  R. Bishop,et al.  Tensor Analysis on Manifolds , 1980 .

[15]  Cláudio T. Silva,et al.  Hardware-assisted visibility sorting for unstructured volume rendering , 2005, IEEE Transactions on Visualization and Computer Graphics.

[16]  Patricia Crossno,et al.  Isosurface extraction using particle systems , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[17]  Andrew S. Glassner,et al.  Space subdivision for fast ray tracing , 1984, IEEE Computer Graphics and Applications.

[18]  Matthias Zwicker,et al.  Hardware-accelerated adaptive EWA volume splatting , 2004, IEEE Visualization 2004.

[19]  Robert Haimes,et al.  Rendering planar cuts through quadratic and cubic finite elements , 2004, IEEE Visualization 2004.

[20]  Robert Michael Kirby,et al.  Ray-tracing polymorphic multidomain spectral/hp elements for isosurface rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[21]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000 .

[22]  Richard Szeliski,et al.  Surface modeling with oriented particle systems , 1992, SIGGRAPH.

[23]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[24]  Bernd Hamann,et al.  Ray casting curved-quadratic elements , 2004, VISSYM'04.

[25]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[26]  Dietmar Saupe,et al.  Interactive Visualization of Implicit Surfaces with Singularities , 1997, Comput. Graph. Forum.

[27]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[28]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[29]  P. Heckbert Fast Surface Particle Repulsion , 1997 .

[30]  Peter L. Williams Visibility-ordering meshed polyhedra , 1992, TOGS.

[31]  J. Z. Zhu,et al.  The finite element method , 1977 .

[32]  Cláudio T. Silva,et al.  Simple, Fast, and Robust Ray Casting of Irregular Grids , 1997, Scientific Visualization Conference (dagstuhl '97).

[33]  V. Pascucci,et al.  Isosurface computation made simple: hardware acceleration, adaptive refinement and tetrahedral stripping , 2004, VISSYM'04.

[34]  Richard Szeliski,et al.  Modeling surfaces of arbitrary topology with dynamic particles , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[35]  Matthias Zwicker,et al.  Surface splatting , 2001, SIGGRAPH.

[36]  Robert M. O'Bara,et al.  Framework for visualizing higher-order basis functions , 2005, VIS 05. IEEE Visualization, 2005..

[37]  Paul Fischer,et al.  High-Order Methods for Incompressible Fluid Flow: Index , 2002 .

[38]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[39]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[40]  John C. Hart,et al.  Using particles to sample and control more complex implicit surfaces , 2005, SIGGRAPH Courses.

[41]  Ross T. Whitaker,et al.  Curvature-based transfer functions for direct volume rendering: methods and applications , 2003, IEEE Visualization, 2003. VIS 2003..

[42]  Bernd Hamann,et al.  Contouring Curved Quadratic Elements , 2003, VisSym.

[43]  Philippe Pierre Pebay,et al.  Visualizing Higher Order Finite Elements: Final Report , 2005 .

[44]  Paul S. Heckbert,et al.  Using particles to sample and control implicit surfaces , 1994, SIGGRAPH.

[45]  Martin Kraus,et al.  Hardware-accelerated volume and isosurface rendering based on cell-projection , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).