PHOTOINDUCED ELECTRON TRANSFER IN A CAROTENOBUCKMINSTERFULLERENE DYAD

A carotenoid‐fullerene dyad has been synthesized by condensing a carotenoid amine with an acid group attached to C60 by a cyclopropane‐based linkage. The lowest excited singlet state of the fullerene is strongly quenched by electron transfer from the carotenoid moiety to generate the charge‐separated species Car+‐C60.‐. In CS2 solution Car+‐C60.‐ has a rise time of 0.8 ps and decays by charge recombination in 534 ps. Light absorbed by either chromophore produces a high yield of Car+‐C60.‐, which implies that internal conversion in the carotenoid is negligible. The lowest triplet level in the dyad is localized on the carotenoid and is populated in low yield from the charge‐separated species. The sensitization of singlet oxygen by the fullerene component is effectively curtailed in the dyad.

[1]  Jan W. Verhoeven,et al.  Photoinduced intramolecular electron transfer in a bridged C60(Acceptor)-Aniline(Donor)system. Photophysical properties of the first active fullerene Diad , 1995 .

[2]  H. Imahori,et al.  Synthesis and Photophysical Property of Porphyrin-Linked Fullerene , 1995 .

[3]  T. Moore,et al.  PREPARATION AND PHOTOPHYSICAL STUDIES OF PORPHYRIN‐C60 DYADS , 1994 .

[4]  T. Moore,et al.  Carotenoids: Nature’s unique pigments for light and energy processing , 1994 .

[5]  T. Moore,et al.  The Photochemistry of Carotenoids: Some Photosynthetic and Photomedical Aspects a , 1993, Annals of the New York Academy of Sciences.

[6]  F. Diederich,et al.  Structures and Chemistry of Methanofullerenes: A Versatile Route into N-[(Methanofullerene)carbonyl]-Substituted Amino Acids , 1993 .

[7]  Ya‐Ping Sun,et al.  Fluorescence spectra and quantum yields of buckminsterfullerene (C60) in room-temperature solutions. No excitation wavelength dependence , 1993 .

[8]  M. Paddon-Row,et al.  Synthesis of a rigid ball-and-chain Donor-acceptor system through Diels-Alder functionalization of buckminsterfullerene (C60) , 1993 .

[9]  Thomas A. Moore,et al.  Molecular mimicry of photosynthetic energy and electron transfer , 1993 .

[10]  R. G. Alden,et al.  Mimicking Carotenoid Quenching of Chlorophyll Fluorescence , 1993 .

[11]  Robert E. Belford,et al.  Nitroxyl free radical enhancement of the forbidden O2(3Σ−g) ← O2(1Δg) radiative transition in chlorinated hydrocarbon solvents , 1993 .

[12]  R. G. Alden,et al.  Biochemical characterization and electron-transfer reactions of sym1, a Rhodobacter capsulatus reaction center symmetry mutant which affects the initial electron donor. , 1992, Biochemistry.

[13]  T. Moore,et al.  Triplet and singlet energy transfer in carotene-porphyrin dyads: role of the linkage bonds. , 1992 .

[14]  J. Silber,et al.  Electrooxidation of β -carotene in chlorinated solvents: The formation of an electroactive film on gold electrodes , 1991 .

[15]  S. Gorun,et al.  Production, spectroscopy, and electronic structure of soluble fullerene ions , 1991 .

[16]  T. Truscott The Photophysics and Photochemistry of the Carotenoids , 1991 .

[17]  Barbara Demmig-Adams,et al.  Carotenoids and photoprotection in plants : a role for the xanthophyll zeaxanthin , 1990 .

[18]  T. G. Truscott,et al.  New trends in photobiology , 1990 .

[19]  T. Moore,et al.  PHOTOPHYSICAL PROPERTIES OF 2‐NITRO‐5,10,15,20‐TETRA‐p‐TOLYLPORPHYRINS , 1990, Photochemistry and photobiology.

[20]  A. Holzwarth,et al.  State transitions in the green alga scenedesmus obliquus probed by time-resolved chlorophyll fluorescence spectroscopy and global data analysis. , 1987, Biophysical journal.

[21]  L. Makings,et al.  Digital back off for computer controlled flash spectrometers , 1987 .

[22]  T. Moore,et al.  Pulse radiolytic and electrochemical investigations of intramolecular electron transfer in carotenoporphyrins and carotenoporphyrin-quinone triads , 1987 .

[23]  M. Wasielewski,et al.  Ultrafast carotenoid to pheophorbide energy transfer in a biomimetic model for antenna function in photosynthesis , 1986, Nature.

[24]  T. Moore,et al.  STEREODYNAMICS OF INTRAMOLECULAR TRIPLET ENERGY TRANSFER IN CAROTENOPORPHYRINS , 1985 .

[25]  N. Mataga,et al.  Ultrafast intersystem crossing in some intramolecular heteroexcimers , 1981 .

[26]  W. G. Herkstroeter Triplet energies of azulene, .beta.-carotene, and ferrocene , 1975 .

[27]  C. Foote,et al.  Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. , 1970, Journal of the American Chemical Society.

[28]  A. Hirsch,et al.  A green fullerene: synthesis and electrochemistry of a Diels–Alder adduct of [60]fullerene with a phthalocyanine , 1995 .

[29]  C. Foote Photophysical and photochemical properties of fullerenes , 1994 .

[30]  Tatsuhisa Kato Absorption and Emission Spectra for C60 Anions , 1994 .

[31]  J. E. Lewis The Triplet Energy of a Carotenoid Pigment Determined by Photoacoustic Calorimetry. , 1993 .

[32]  H. Frank,et al.  The photochemistry and function of carotenoids in photosynthesis , 1993 .

[33]  T. Moore,et al.  Synthesis of carotenoporphyrin models for photosynthetic energy and electron transfer , 1992 .

[34]  Michael P. O'Neil,et al.  Triplet states of fullerenes C60 and C70 : electron paramagnetic resonance spectra, photophysics, and electronic structures , 1991 .

[35]  H. Frank,et al.  How carotenoids function in photosynthetic bacteria. , 1987, Biochimica et biophysica acta.

[36]  C. Foote,et al.  Chemistry of singlet oxygen. , 1968 .