Numerical Simulations in Hydraulic Engineering

The main focus of the chapter is to present various case studies, showing the link between Computational Fluid Dynamics (CFD) and traditional scale model tests in the laboratory. The goal is to illustrate the possibilities and limitations when coupling these two different methods in the context of hydraulic engineering applications. The topics range from hydraulic investigations where numerical simulations are a vital tool for model validation (optimisation and quantification of local head losses, the capacity of a spillway and as a third example impulse waves caused by an avalanche), to modelling of debris flow and log jam processes, including bed load transport issues. The use of such hybrid approaches can contribute to cost-saving and realisation of more complex investigations in shorter time.

[1]  David P. Thoma Zur Theorie des Wasserschlosses bei selbsttätig geregelten Turbinenanlagen , 1910 .

[2]  Willi H. Hager,et al.  Probability of Drift Blockage at Bridge Decks , 2011 .

[3]  W. White,et al.  Evacuation of Sediments from Reservoirs , 2001 .

[4]  Gerhard Kapeller,et al.  Lawineneinstoß in einen Speichersee — Vergleich numerisches und physikalisches Modell , 2010 .

[5]  K. Richards,et al.  River Channels: Environment and Process , 1989 .

[6]  Jürgen Giesecke,et al.  Wasserkraftanlagen : Planung, Bau und Betrieb , 2005 .

[8]  Giovanni De Cesare,et al.  Herausforderungen des heutigen wasserbaulichen Versuchswesens mit drei Beispielen , 2012, WASSERWIRTSCHAFT.

[9]  Mohamed Salah Ghidaoui,et al.  A Review of Water Hammer Theory and Practice , 2005 .

[10]  Dieter Rickenmann,et al.  Comparison of bed load transport in torrents and gravel bed streams , 2001 .

[11]  D. Rickenmann Hyperconcentrated Flow and Sediment Transport at Steep Slopes , 1991 .

[12]  D. Wilcox Turbulence modeling for CFD , 1993 .

[13]  Dieter Rickenmann,et al.  Empirical Relationships for Debris Flows , 1999 .

[14]  V. Weitbrecht,et al.  Driftwood: Risk Analysis and Engineering Measures , 2013 .

[15]  Zhou Qi,et al.  Head loss coefficient of orifice plate energy dissipator , 2010 .

[16]  Qin Zhang,et al.  Hydraulic Characteristics of Multistage Orifice Tunnels , 2001 .

[17]  Michael Pfister,et al.  Impulswellen infolge Lawineneinstoß in den Speicher Kühtai , 2011 .

[18]  B. Huber Physikalischer Modelversuch und Cfd-Simulation einer asymmetrischen Drossel in einem T-Abzweigstück , 2010 .

[19]  Hermann M. Fritz,et al.  Initial phase of landslide generated impulse waves , 2002 .

[20]  Steven R. Abt Hydraulic Structures by P. Novak, A. I. B. Moffat, C. Nalluri, and R. Narayanan , 1996 .

[21]  V. Heller,et al.  Scale effects in physical hydraulic engineering models , 2011 .

[23]  Kemal Hanjalic,et al.  Modelling Turbulence in Engineering and the Environment: Second-Moment Routes to Closure , 2011 .

[24]  Andreas Paul Zischg,et al.  Modelling woody material transport and deposition in alpine rivers , 2011 .

[25]  A. J. Ward-Smith Internal Fluid Flow: The Fluid Dynamics of Flow in Pipes and Ducts , 1980 .

[26]  Andreas Zweifel,et al.  Impulswellen: Effekte der Rutschdichte und der Wassertiefe , 2004 .

[27]  Dr.-Ing. Frieder Haakh Vortex chamber diodes as throttle devices in pipe systems. Computation of transient flow , 2003 .

[28]  Muneo Hirano,et al.  RIVER-BED DEGRADATION WITH ARMORING , 1971 .

[29]  Daniela Lange,et al.  Schwemmholz: Probleme und Lösungsansätze , 2006 .

[30]  Anton Schleiss,et al.  Hydraulic System Modélisation des systèmes hydrauliques à écoulements transitoires en charge , 2004 .

[31]  Helge Fuchs Solitary impulse wave run-up and overland flow , 2013 .

[32]  Charles Jaeger,et al.  Fluid transients in hydro-electric engineering practice , 1977 .

[33]  Bijan Dargahi,et al.  Flow characteristics of bottom outlets with moving gates , 2010 .

[34]  Gerald Zenz,et al.  Particle Image Velocimetry of a Y-bifurcator , 2011 .