Bounded Linear Logic, Revisited

We present QBAL, an extension of Girard, Scedrov and Scott's bounded linear logic. The main novelty of the system is the possibility of quantifying over resource variables. This generalization makes bounded linear logic considerably more flexible, while preserving soundness and completeness for polynomial time. In particular, we provide compositional embeddings of Leivant's RRW and Hofmann's LFPL into QBAL.

[1]  Vincent Danos,et al.  Linear logic and elementary time , 2003, Inf. Comput..

[2]  Martin Hofmann Programming languages capturing complexity classes , 2000, SIGA.

[3]  Hongwei Xi,et al.  Dependent ML An approach to practical programming with dependent types , 2007, Journal of Functional Programming.

[4]  H. Barendregt Lambda Calculus kHV its Hovels , 1984 .

[5]  Andrzej S. Murawski,et al.  On an interpretation of safe recursion in light affine logic , 2004, Theor. Comput. Sci..

[6]  Jean-Yves Marion,et al.  Efficient First Order Functional Program Interpreter with Time Bound Certifications , 2000, LPAR.

[7]  Daniel Leivant,et al.  Stratified functional programs and computational complexity , 1993, POPL '93.

[8]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[9]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[10]  Ulrich Schöpp,et al.  Stratified Bounded Affine Logic for Logarithmic Space , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[11]  Martin Hofmann Linear types and non-size-increasing polynomial time computation , 2003, Inf. Comput..

[12]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[13]  Martin Hofmann,et al.  Realizability models for BLL-like languages , 2004, Theor. Comput. Sci..

[14]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[15]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[16]  Helmut Schwichtenberg,et al.  Basic proof theory , 1996, Cambridge tracts in theoretical computer science.

[17]  Daniel Leivant,et al.  A foundational delineation of computational feasibility , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[18]  Andre Scedrov,et al.  Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..

[19]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[20]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[21]  Ulrich Sch Stratified Bounded Affine Logic for Logarithmic Space , 2007 .