Modulating robustness in control design: Principles and algorithms

Many problems in systems and control, such as controller synthesis and state estimation, are often formulated as optimization problems. In many cases, the cost function incorporates variables that are used to model uncertainty, in addition to optimization variables, and this article employs uncertainty described as probabilistic variables. In a probabilistic setup, a cost value can only be guaranteed with a certain probability. Like pulling down one end of a rope wrapped around a pulley lifts the other end, decreasing the probability improves the cost value. This article analyzes this trade-off and describes quantitative tools to drive the user's choice toward a suitable compromise.

[1]  Hui X. Li,et al.  A probabilistic approach to optimal robust path planning with obstacles , 2006, 2006 American Control Conference.

[2]  Robert F. Stengel,et al.  Robust Control System Design Using Simulated Annealing , 2000 .

[3]  Michael Nikolaou,et al.  Chance‐constrained model predictive control , 1999 .

[4]  T. Başar Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses , 2001 .

[5]  R. Stengel,et al.  Technical notes and correspondence: Stochastic robustness of linear time-invariant control systems , 1991 .

[6]  Matthew R. James,et al.  Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games , 1992, Math. Control. Signals Syst..

[7]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[8]  Giuseppe Carlo Calafiore,et al.  A probabilistic framework for problems with real structured uncertainty in systems and control , 2002, Autom..

[9]  Mathukumalli Vidyasagar,et al.  A Theory of Learning and Generalization , 1997 .

[10]  Marco C. Campi,et al.  Why Is Resorting to Fate Wise? A Critical Look at Randomized Algorithms in Systems and Control , 2010, Eur. J. Control.

[11]  Robert F. Stengel,et al.  Probabilistic evaluation of control system robustness , 1995 .

[12]  Mathukumalli Vidyasagar,et al.  Statistical learning theory and randomized algorithms for control , 1998 .

[13]  R. Tempo,et al.  Probabilistic robustness analysis: explicit bounds for the minimum number of samples , 1997 .

[14]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[15]  Daniel Hernández-Hernández,et al.  Risk Sensitive Markov Decision Processes , 1997 .

[16]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[17]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[18]  T. Alamo,et al.  Revisiting statistical learning theory for uncertain feasibility and optimization problems , 2007, 2007 46th IEEE Conference on Decision and Control.

[19]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[20]  Roberto Tempo,et al.  Probabilistic design of LPV control systems , 2003, Autom..

[21]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[22]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[23]  Robert F. Stengel,et al.  Robust control system design using random search and genetic algorithms , 1997, IEEE Trans. Autom. Control..

[24]  K. Åström Introduction to Stochastic Control Theory , 1970 .

[25]  Giuseppe Carlo Calafiore,et al.  Randomized algorithms for probabilistic robustness with real and complex structured uncertainty , 2000, IEEE Trans. Autom. Control..

[26]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[27]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[28]  D. Mayne,et al.  Min-max feedback model predictive control for constrained linear systems , 1998, IEEE Trans. Autom. Control..

[29]  Melvyn Sim,et al.  From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization , 2010, Oper. Res..

[30]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[31]  Marco C. Campi,et al.  Modulating robustness in robust control: Making it easy through randomization , 2007, 2007 46th IEEE Conference on Decision and Control.

[32]  Masahiro Ono,et al.  A Probabilistic Particle-Control Approximation of Chance-Constrained Stochastic Predictive Control , 2010, IEEE Transactions on Robotics.

[33]  Rhodes,et al.  Optimal stochastic linear systems with exponential performance criteria and their relation to deterministic differential games , 1973 .

[34]  Matthew R. James,et al.  NONLINEAR DISCRETE‐TIME RISK‐SENSITIVE OPTIMAL CONTROL , 1996 .

[35]  Giuseppe Carlo Calafiore,et al.  Stochastic algorithms for exact and approximate feasibility of robust LMIs , 2001, IEEE Trans. Autom. Control..

[36]  B. Ross Barmish,et al.  The uniform distribution: A rigorous justification for its use in robustness analysis , 1996, Math. Control. Signals Syst..

[37]  Arturo Locatelli,et al.  Control Theory and Design: An Rh2 and Rh Viewpoint , 1997 .

[38]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[39]  Eric C. Kerrigan,et al.  Optimization over state feedback policies for robust control with constraints , 2006, Autom..

[40]  Roberto Tempo,et al.  Probabilistic robust design with linear quadratic regulators , 2001, Syst. Control. Lett..

[41]  Eduardo F. Camacho,et al.  Randomized Strategies for Probabilistic Solutions of Uncertain Feasibility and Optimization Problems , 2009, IEEE Transactions on Automatic Control.

[42]  Giuseppe Carlo Calafiore,et al.  The scenario approach to robust control design , 2006, IEEE Transactions on Automatic Control.

[43]  Mathukumalli Vidyasagar,et al.  Randomized algorithms for robust controller synthesis using statistical learning theory , 2001, Autom..

[44]  Dimitris Bertsimas,et al.  Constrained Stochastic LQC: A Tractable Approach , 2007, IEEE Transactions on Automatic Control.

[45]  R. Tempo,et al.  Probabilistic robust design of LPV control systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[46]  Darinka Dentcheva,et al.  Optimization Models with Probabilistic Constraints , 2006 .

[47]  Yasuaki Oishi,et al.  Polynomial-time algorithms for probabilistic solutions of parameter-dependent linear matrix inequalities , 2007, Autom..

[48]  Marco C. Campi,et al.  The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs , 2008, SIAM J. Optim..

[49]  John C. Doyle,et al.  Guaranteed margins for LQG regulators , 1978 .

[50]  Dimitris Bertsimas,et al.  Constructing Uncertainty Sets for Robust Linear Optimization , 2009, Oper. Res..

[51]  P. Whittle Risk-sensitive linear/quadratic/gaussian control , 1981, Advances in Applied Probability.

[52]  Robert F. Stengel,et al.  Robust control of nonlinear systems with parametric uncertainty , 2002, Autom..

[53]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[54]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[55]  B. R. Barmish,et al.  Distributionally Robust Monte Carlo Simulation: A Tutorial Survey , 2002 .

[56]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[57]  Pravin Varaiya,et al.  Stochastic Systems: Estimation, Identification, and Adaptive Control , 1986 .

[58]  W. Marsden I and J , 2012 .

[59]  Yasumasa Fujisaki,et al.  Guaranteed cost regulator design: A probabilistic solution and a randomized algorithm , 2007, Autom..

[60]  Marco C. Campi,et al.  A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality , 2011, J. Optim. Theory Appl..

[61]  Robert F. Stengel,et al.  A monte carlo approach to the analysis of control system robustness , 1993, Autom..

[62]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[63]  M. Campi,et al.  The scenario approach for systems and control design , 2008 .

[64]  Robert F. Stengel,et al.  Some Effects of Parameter Variations on the Lateral-Directional Stability of Aircraft , 1980 .

[65]  B. R. Barmish,et al.  Probabilistic enhancement of classical robustness margins: the unirectangularity concept , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[66]  Robert F. Stengel,et al.  Probabilistic Control of Nonlinear Uncertain Systems , 2006 .

[67]  Pu Li,et al.  A probabilistically constrained model predictive controller , 2002, Autom..

[68]  R. Tempo,et al.  Randomized Algorithms for Analysis and Control of Uncertain Systems , 2004 .

[69]  Michel Verhaegen,et al.  An ellipsoid algorithm for probabilistic robust controller design , 2003, Syst. Control. Lett..

[70]  András Prékopa The use of discrete moment bounds in probabilisticconstrained stochastic programming models , 1999, Ann. Oper. Res..

[71]  András Prékopa Static Stochastic Programming Models , 1995 .