Toward better drug repositioning: prioritizing and integrating existing methods into efficient pipelines.

[1]  Fuhai Li,et al.  Novel modeling of cancer cell signaling pathways enables systematic drug repositioning for distinct breast cancer metastases. , 2013, Cancer research.

[2]  Stephen T. C. Wong,et al.  DrugMap Central: an on-line query and visualization tool to facilitate drug repositioning studies , 2013, Bioinform..

[3]  Salvatore Alaimo,et al.  Drug–target interaction prediction through domain-tuned network-based inference , 2013, Bioinform..

[4]  Songzhu Michael An,et al.  Stem cell signaling as a target for novel drug discovery: recent progress in the WNT and Hedgehog pathways , 2013, Acta Pharmacologica Sinica.

[5]  H. Burstein Off-label use of oncology drugs: too much, too little, or just right? , 2013, Journal of the National Comprehensive Cancer Network : JNCCN.

[6]  Natalia Novac,et al.  Challenges and opportunities of drug repositioning. , 2013, Trends in pharmacological sciences.

[7]  Katarzyna H. Kaminska,et al.  Characterization of drug-induced transcriptional modules: towards drug repositioning and functional understanding , 2013, Molecular systems biology.

[8]  P. Sanseau,et al.  Computational Drug Repositioning: From Data to Therapeutics , 2013, Clinical pharmacology and therapeutics.

[9]  Weida Tong,et al.  In silico drug repositioning: what we need to know. , 2013, Drug discovery today.

[10]  H. Osada,et al.  High-throughput screening identifies small molecule inhibitors of molecular chaperones. , 2012, Current pharmaceutical design.

[11]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[12]  Damian Szklarczyk,et al.  STRING v9.1: protein-protein interaction networks, with increased coverage and integration , 2012, Nucleic Acids Res..

[13]  S. Corey,et al.  Drug repurposing in pediatrics and pediatric hematology oncology. , 2013, Drug discovery today.

[14]  Deepak K Rajpal,et al.  Applications of Connectivity Map in drug discovery and development. , 2012, Drug discovery today.

[15]  Xiaowei Xu,et al.  Investigating drug repositioning opportunities in FDA drug labels through topic modeling , 2012, BMC Bioinformatics.

[16]  Christopher H Contag,et al.  Identification of cell surface targets through meta-analysis of microarray data. , 2012, Neoplasia.

[17]  Chuang Liu,et al.  Prediction of Drug-Target Interactions and Drug Repositioning via Network-Based Inference , 2012, PLoS Comput. Biol..

[18]  L. Cardon,et al.  Use of genome-wide association studies for drug repositioning , 2012, Nature Biotechnology.

[19]  Steven J. M. Jones,et al.  Drug repositioning for personalized medicine , 2012, Genome Medicine.

[20]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[21]  D. Pfister Off-label use of oncology drugs: the need for more data and then some. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  Michael K. Gilson,et al.  BindingDB: A Protein-Ligand Database for Drug Discovery , 2012 .

[23]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[24]  Damian Szklarczyk,et al.  STITCH 3: zooming in on protein–chemical interactions , 2011, Nucleic Acids Res..

[25]  Yang Song,et al.  Therapeutic target database update 2012: a resource for facilitating target-oriented drug discovery , 2011, Nucleic Acids Res..

[26]  Stephen T. C. Wong,et al.  A novel method of transcriptional response analysis to facilitate drug repositioning for cancer therapy. , 2012, Cancer research.

[27]  Pankaj Agarwal,et al.  Systematic Drug Repositioning Based on Clinical Side-Effects , 2011, PloS one.

[28]  Alexander A. Morgan,et al.  Computational Repositioning of the Anticonvulsant Topiramate for Inflammatory Bowel Disease , 2011, Science Translational Medicine.

[29]  Y. Lussier,et al.  The Emergence of Genome-Based Drug Repositioning , 2011, Science Translational Medicine.

[30]  Alexander A. Morgan,et al.  Discovery and Preclinical Validation of Drug Indications Using Compendia of Public Gene Expression Data , 2011, Science Translational Medicine.

[31]  D. Swinney,et al.  How were new medicines discovered? , 2011, Nature Reviews Drug Discovery.

[32]  Sanjay Joshua Swamidass,et al.  Mining small-molecule screens to repurpose drugs , 2011, Briefings Bioinform..

[33]  Xiaobo Zhou,et al.  An enhanced Petri-net model to predict synergistic effects of pairwise drug combinations from gene microarray data , 2011, Bioinform..

[34]  Sean Ekins,et al.  In silico repositioning of approved drugs for rare and neglected diseases. , 2011, Drug discovery today.

[35]  Gary D. Bader,et al.  Pathway Commons, a web resource for biological pathway data , 2010, Nucleic Acids Res..

[36]  Alexander A. Morgan,et al.  Supplementary Materials for Computational Repositioning of the Anticonvulsant Topiramate for Inflammatory Bowel Disease , 2011 .

[37]  Stephen T. C. Wong,et al.  Image-based chemical screening identifies drug efflux inhibitors in lung cancer cells. , 2010, Cancer research.

[38]  R. Tagliaferri,et al.  Discovery of drug mode of action and drug repositioning from transcriptional responses , 2010, Proceedings of the National Academy of Sciences.

[39]  Shiwen Zhao,et al.  Network-Based Relating Pharmacological and Genomic Spaces for Drug Target Identification , 2010, PloS one.

[40]  P. Bork,et al.  A side effect resource to capture phenotypic effects of drugs , 2010, Molecular systems biology.

[41]  J. Irwin,et al.  Docking and chemoinformatic screens for new ligands and targets. , 2009, Current opinion in biotechnology.

[42]  Philip E. Bourne,et al.  Drug Discovery Using Chemical Systems Biology: Repositioning the Safe Medicine Comtan to Treat Multi-Drug and Extensively Drug Resistant Tuberculosis , 2009, PLoS Comput. Biol..

[43]  K. Knopf,et al.  PCN112 OFF-LABEL USE OF ONCOLOGY DRUGS IN A COMMUNITY ONCOLOGY EMR DATABASE , 2009 .

[44]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[45]  Kenneth H. Buetow,et al.  PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..

[46]  P. Bork,et al.  Drug Target Identification Using Side-Effect Similarity , 2008, Science.

[47]  T. Day,et al.  Wnt and hedgehog signaling pathways in bone development. , 2008, The Journal of bone and joint surgery. American volume.

[48]  David S. Wishart,et al.  DrugBank: a knowledgebase for drugs, drug actions and drug targets , 2007, Nucleic Acids Res..

[49]  Robert B. Russell,et al.  SuperTarget and Matador: resources for exploring drug-target relationships , 2007, Nucleic Acids Res..

[50]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[51]  S. Ekins,et al.  In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling , 2007, British journal of pharmacology.

[52]  Andreas Bender,et al.  Understanding False Positives in Reporter Gene Assays: in Silico Chemogenomics Approaches To Prioritize Cell-Based HTS Data , 2007, J. Chem. Inf. Model..

[53]  Christopher P Austin,et al.  A high-throughput screen for aggregation-based inhibition in a large compound library. , 2007, Journal of medicinal chemistry.

[54]  V. McKusick Mendelian Inheritance in Man and Its Online Version, OMIM , 2007, The American Journal of Human Genetics.

[55]  Paul A Clemons,et al.  The Connectivity Map: Using Gene-Expression Signatures to Connect Small Molecules, Genes, and Disease , 2006, Science.

[56]  Jun O. Liu,et al.  A clinical drug library screen identifies astemizole as an antimalarial agent , 2006, Nature chemical biology.

[57]  A. Carnero,et al.  High throughput screening in drug discovery , 2006, Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico.

[58]  Yasushi Okuno,et al.  GLIDA: GPCR-ligand database for chemical genomic drug discovery , 2005, Nucleic Acids Res..

[59]  Dmitrij Frishman,et al.  The MIPS mammalian protein?Cprotein interaction database , 2005, Bioinform..

[60]  T. Ashburn,et al.  Drug repositioning: identifying and developing new uses for existing drugs , 2004, Nature Reviews Drug Discovery.

[61]  Natalie Wilson,et al.  Human Protein Reference Database , 2004, Nature Reviews Molecular Cell Biology.

[62]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[63]  Deqi Chen,et al.  High-throughput virtual screening for drug discovery in parallel. , 2002, Current opinion in drug discovery & development.

[64]  B. Shoichet,et al.  Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. , 2002, Journal of medicinal chemistry.

[65]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[66]  Russ B. Altman,et al.  PharmGKB: the Pharmacogenetics Knowledge Base , 2002, Nucleic Acids Res..

[67]  Roger E Bumgarner,et al.  Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. , 2001, Science.

[68]  B. Roth,et al.  The Multiplicity of Serotonin Receptors: Uselessly Diverse Molecules or an Embarrassment of Riches? , 2000 .

[69]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[70]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[71]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[72]  J. Broach,et al.  High-throughput screening for drug discovery. , 1996, Nature.