A Bayesian Learning Approach to Concept-Based Document Classification

A Bayesian Learning Approach to Concept-Based Document Classification

[1]  Thomas Hofmann,et al.  Text categorization by boosting automatically extracted concepts , 2003, SIGIR.

[2]  Chaomei Chen,et al.  Mining the Web: Discovering knowledge from hypertext data , 2004, J. Assoc. Inf. Sci. Technol..

[3]  Andrew McCallum,et al.  Distributional clustering of words for text classification , 1998, SIGIR '98.

[4]  Andrew McCallum,et al.  A comparison of event models for naive bayes text classification , 1998, AAAI 1998.

[5]  Nello Cristianini,et al.  Latent Semantic Kernels , 2001, Journal of Intelligent Information Systems.

[6]  Susan T. Dumais,et al.  Inductive learning algorithms and representations for text categorization , 1998, CIKM '98.

[7]  Tom M. Mitchell,et al.  Improving Text Classification by Shrinkage , 1998 .

[8]  Pedro M. Domingos,et al.  Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier , 1996, ICML.

[9]  Nello Cristianini,et al.  Learning Semantic Similarity , 2002, NIPS.

[10]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[11]  Thomas Hofmann,et al.  Statistical Models for Co-occurrence Data , 1998 .

[12]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[13]  Nancy Ide,et al.  Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art , 1998, Comput. Linguistics.

[14]  Koby Crammer,et al.  On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines , 2002, J. Mach. Learn. Res..

[15]  Gerhard Weikum,et al.  Exploiting Structure, Annotation, and Ontological Knowledge for Automatic Classification of XML Data , 2003, WebDB.

[16]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[17]  Tom M. Mitchell,et al.  Improving Text Classification by Shrinkage in a Hierarchy of Classes , 1998, ICML.

[18]  Thomas Hofmann,et al.  Learning the Similarity of Documents: An Information-Geometric Approach to Document Retrieval and Categorization , 1999, NIPS.

[19]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[20]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[21]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[22]  Thomas Hofmann,et al.  Support vector machine learning for interdependent and structured output spaces , 2004, ICML.

[23]  Xuedong Huang,et al.  Improved topic-dependent language modeling using information retrieval techniques , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[24]  Thomas Hofmann,et al.  Learning with Taxonomies: Classifying Documents and Words , 2003 .

[25]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.