Hybrid solar cells

[1]  C. Pettinari Inorganica Chimica Acta , 2010 .

[2]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[3]  N. S. Sariciftci,et al.  Hybrid solar cells using PbS nanoparticles , 2007 .

[4]  W. Jaegermann,et al.  Sensitization of thin-film-silicon by a phthalocyanine as strong organic absorber , 2006 .

[5]  P. Smertenko,et al.  Organic layer effect on Si solar cells performance , 2006 .

[6]  Wje Waldo Beek,et al.  Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles , 2006 .

[7]  Helmut Neugebauer,et al.  Hybrid Solar Cells Using HgTe Nanocrystals and Nanoporous TiO2 Electrodes , 2006 .

[8]  Michael Grätzel,et al.  TiO2 pore-filling and its effect on the efficiency of solid-state dye-sensitized solar cells , 2006 .

[9]  Liduo Wang,et al.  Review of recent progress in solid-state dye-sensitized solar cells , 2006 .

[10]  Reuben T. Collins,et al.  Hybrid photovoltaic devices of polymer and ZnO nanofiber composites , 2006 .

[11]  G. Konstantatos,et al.  Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier , 2005 .

[12]  A Paul Alivisatos,et al.  Air-Stable All-Inorganic Nanocrystal Solar Cells Processed from Solution , 2005, Science.

[13]  Michael Grätzel,et al.  Solar energy conversion by dye-sensitized photovoltaic cells. , 2005, Inorganic chemistry.

[14]  G. Konstantatos,et al.  Solution-processed PbS quantum dot infrared photodetectors and photovoltaics , 2005, Nature materials.

[15]  Joop Schoonman,et al.  Solar‐Energy Conversion in TiO2/CuInS2 Nanocomposites , 2005 .

[16]  A. Fujishima,et al.  Solid-State Dye-Sensitized Solar Cells , 2005 .

[17]  M. Paoli,et al.  Polymers in dye sensitized solar cells: overview and perspectives , 2004 .

[18]  N. M. Iha,et al.  Metal complex sensitizers in dye-sensitized solar cells , 2004 .

[19]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[20]  W. J. Beek,et al.  Efficient Hybrid Solar Cells from Zinc Oxide Nanoparticles and a Conjugated Polymer , 2004 .

[21]  Qing Shen,et al.  Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates , 2004 .

[22]  Michael Grätzel,et al.  Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells , 2004 .

[23]  Peng Wang,et al.  A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells. , 2004, Journal of the American Chemical Society.

[24]  S. Haque,et al.  Flexible dye sensitised nanocrystalline semiconductor solar cells. , 2003, Chemical communications.

[25]  T. Hoshi,et al.  Dye-sensitized Solar Cell with Polysaccharide Solid Electrolyte , 2003 .

[26]  Helmut Tributsch,et al.  On the photo-degradation of dye sensitized solid-state TiO2|dye|CuI cells , 2003 .

[27]  R. Könenkamp,et al.  Solar cell with extremely thin absorber on highly structured substrate , 2003 .

[28]  Greg P. Smestad,et al.  A technique to compare polythiophene solid-state dye sensitized TiO2 solar cells to liquid junction devices , 2003 .

[29]  Lenneke H. Slooff,et al.  Photoinduced Electron Transfer and Photovoltaic Response of a MDMO‐PPV:TiO2 Bulk‐Heterojunction , 2003 .

[30]  H. Nalwa,et al.  Handbook of Photochemistry and Photobiology , 2003 .

[31]  N. S. Sariciftci,et al.  Core/shell nanomaterials in photovoltaics , 2003 .

[32]  K. Tennakone,et al.  Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a CuI Crystal Growth Inhibitor , 2002 .

[33]  Frank Lenzmann,et al.  A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25−TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics , 2002 .

[34]  Michael Grätzel,et al.  Improvement of the photovoltaic performance of solid-state dye-sensitized device by silver complexation of the sensitizer cis-bis(4,4 ' -dicarboxy-2,2 ' bipyridine)-bis(isothiocyanato) ruthenium(II) , 2002 .

[35]  Martin A. Green,et al.  Third generation photovoltaics: solar cells for 2020 and beyond , 2002 .

[36]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[37]  K. Tennakone,et al.  Dye-Sensitized Solid-State Solar Cells: Use of Crystal Growth Inhibitors for Deposition of the Hole Collector , 2002 .

[38]  Catherine J. Murphy,et al.  Quantum Dots: A Primer , 2002 .

[39]  C. Brabec,et al.  Hybrid solar cells based on dye-sensitized nanoporous TiO2 electrodes and conjugated polymers as hole transport materials , 2001 .

[40]  Marco Piccirelli,et al.  High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination , 2001 .

[41]  G.K.R. Senadeera,et al.  Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide , 2001 .

[42]  K. Tennakone,et al.  Enhanced Efficiency of a Dye-Sensitized Solar Cell Made from MgO-Coated Nanocrystalline SnO2 , 2001 .

[43]  James R. Durrant,et al.  Dye-Sensitized Nanocrystalline Solar Cells Employing a Polymer Electrolyte , 2001 .

[44]  Martin A. Green,et al.  Third generation photovoltaics: Ultra‐high conversion efficiency at low cost , 2001 .

[45]  I. Kaiser,et al.  The eta-solar cell with CuInS2: A photovoltaic cell concept using an extremely thin absorber (eta) , 2001 .

[46]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[47]  G.K.R. Senadeera,et al.  Highly stable dye-sensitized solid-state solar cell with the semiconductor 4CuBr 3S(C4H9)2 as the hole collector , 2000 .

[48]  N. Lewis,et al.  Dye Sensitization of Nanocrystalline Titanium Dioxide with Osmium and Ruthenium Polypyridyl Complexes , 2000 .

[49]  D. Taylor,et al.  Polymer networks: principles of formation, structure and properties , 2000 .

[50]  Dieter Meissner,et al.  Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells , 2000 .

[51]  Michael Grätzel,et al.  Perspectives for dye‐sensitized nanocrystalline solar cells , 2000 .

[52]  A. Alivisatos,et al.  CdSe Nanocrystal Rods/Poly(3‐hexylthiophene) Composite Photovoltaic Devices , 1999 .

[53]  J. Nunzi,et al.  Dye sensitized polythiophene solar cells , 1999 .

[54]  Moungi G. Bawendi,et al.  Spectroscopy of Single CdSe Nanocrystallites , 1999 .

[55]  Michael Grätzel,et al.  Efficient near-IR sensitization of nanocrystalline TiO2 films by zinc and aluminum phthalocyanines , 1999 .

[56]  M. Bryce Tetrathiafulvalenes as π‐Electron Donors for Intramolecular Charge‐Transfer Materials , 1999 .

[57]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[58]  Michael Grätzel,et al.  Applications of functionalized transition metal complexes in photonic and optoelectronic devices , 1998 .

[59]  K. Tennakone,et al.  A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex , 1998 .

[60]  Arthur J. Nozik,et al.  Photosensitization of nanoporous TiO2 electrodes with InP quantum dots , 1998 .

[61]  Daniel T. Schwartz,et al.  Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL‘NCS/CuSCN: Initiation and Potential Mechanisms , 1998 .

[62]  Yaochun Shen,et al.  Photosensitization of TiO2 semiconductor with porphyrin , 1998 .

[63]  Xiaomei Lu,et al.  SENSITIZATION OF NANOCRYSTALLINE TIO2 ELECTRODE WITH QUANTUM SIZED CDSE AND ZNTCPC MOLECULES , 1997 .

[64]  Peng,et al.  Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. , 1996, Physical review. B, Condensed matter.

[65]  K. Yoshihara,et al.  Femtosecond Electron-Transfer Dynamics at a Sensitizing Dye−Semiconductor (TiO2) Interface , 1996 .

[66]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[67]  J. Hummelen,et al.  Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions , 1995, Science.

[68]  K. Tennakone,et al.  A dye-sensitized nano-porous solid-state photovoltaic cell , 1995 .

[69]  P. Searson,et al.  A Solid State, Dye Sensitized Photoelectrochemical Cell , 1995 .

[70]  R. Könenkamp,et al.  Photoconduction in porous TiO2 sensitized by PbS quantum dots , 1995 .

[71]  Horst Weller,et al.  Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors , 1994 .

[72]  Prashant V. Kamat,et al.  Photoelectrochemical behavior of thin CdSe and coupled TiO2/CdSe semiconductor films , 1993 .

[73]  M. Graetzel,et al.  Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins , 1993 .

[74]  H. Weller Colloidal Semiconductor Q‐Particles: Chemistry in the Transition Region Between Solid State and Molecules , 1993 .

[75]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[76]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[77]  M. Steigerwald,et al.  Semiconductor crystallites: a class of large molecules , 1990 .

[78]  R. Lathe Phd by thesis , 1988, Nature.

[79]  Kuppuswamy Kalyanasundaram,et al.  Sensitization of titanium dioxide in the visible light region using zinc porphyrins , 1987 .

[80]  C. Vincent,et al.  Polymer electrolyte reviews. 1 , 1987 .

[81]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .