The κ parameter and κ-distribution in κ-deformed statistics for the systems in an external field
暂无分享,去创建一个
[1] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[2] G. Kaniadakis,et al. Non-linear kinetics underlying generalized statistics , 2001 .
[3] A. M. Scarfone,et al. Kinetical foundations of non-conventional statistics , 2001 .
[4] A. M. Scarfone,et al. A new one-parameter deformation of the exponential function , 2002 .
[5] Du Jiulin,et al. The nonextensive parameter and Tsallis distribution for self-gravitating systems , 2004 .
[6] A. M. Scarfone,et al. Lesche stability of κ-entropy , 2004 .
[7] C. Tsallis,et al. Nonextensive Entropy: Interdisciplinary Applications , 2004 .
[8] Sumiyoshi Abe,et al. Stabilities of generalized entropies , 2004 .
[9] Giorgio Kaniadakis,et al. A κ-entropic approach to the analysis of the fracture problem , 2004 .
[10] A. M. Scarfone,et al. Deformed logarithms and entropies , 2004, cond-mat/0402418.
[11] Nonextensivity in nonequilibrium plasma systems with Coulombian long-range interactions , 2004, cond-mat/0404602.
[12] A M Scarfone,et al. Two-parameter deformations of logarithm, exponential, and entropy: a consistent framework for generalized statistical mechanics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] D. Heggie,et al. McScatter: A simple three-body scattering package with stellar evolution , 2006, astro-ph/0604294.
[14] R. Silva,et al. The H-theorem in κ-statistics : influence on the molecular chaos hypothesis , 2006 .
[15] Jiulin Du. Test of nonextensive statistical mechanics by solar sound speeds , 2006 .