The κ parameter and κ-distribution in κ-deformed statistics for the systems in an external field

[1]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[2]  G. Kaniadakis,et al.  Non-linear kinetics underlying generalized statistics , 2001 .

[3]  A. M. Scarfone,et al.  Kinetical foundations of non-conventional statistics , 2001 .

[4]  A. M. Scarfone,et al.  A new one-parameter deformation of the exponential function , 2002 .

[5]  Du Jiulin,et al.  The nonextensive parameter and Tsallis distribution for self-gravitating systems , 2004 .

[6]  A. M. Scarfone,et al.  Lesche stability of κ-entropy , 2004 .

[7]  C. Tsallis,et al.  Nonextensive Entropy: Interdisciplinary Applications , 2004 .

[8]  Sumiyoshi Abe,et al.  Stabilities of generalized entropies , 2004 .

[9]  Giorgio Kaniadakis,et al.  A κ-entropic approach to the analysis of the fracture problem , 2004 .

[10]  A. M. Scarfone,et al.  Deformed logarithms and entropies , 2004, cond-mat/0402418.

[11]  Nonextensivity in nonequilibrium plasma systems with Coulombian long-range interactions , 2004, cond-mat/0404602.

[12]  A M Scarfone,et al.  Two-parameter deformations of logarithm, exponential, and entropy: a consistent framework for generalized statistical mechanics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  D. Heggie,et al.  McScatter: A simple three-body scattering package with stellar evolution , 2006, astro-ph/0604294.

[14]  R. Silva,et al.  The H-theorem in κ-statistics : influence on the molecular chaos hypothesis , 2006 .

[15]  Jiulin Du Test of nonextensive statistical mechanics by solar sound speeds , 2006 .