The rise of computational techniques in atom probe microscopy

Abstract Much effort has been devoted to the development of computational techniques in atom probe microscopy over the past decade. There have been several drivers for this effort. Firstly, there has been effort devoted to addressing the challenges of discerning information from the increasingly large size of the data, and capturing the opportunities that this large data presents. Secondly, there has been significant new effort devoted to the simulation of atom probe data so that pristine datasets that contain microstructural features of increasing complexity can be generated in-silico , and subjected to complex data-mining algorithms. This has enabled the benchmarking of various algorithms, guided the setting of parameters for particular analyses, and exposed the effects of instrumentation parameters such as detector efficiency and aberrations in ionic flight path. The authors are especially interested in the prospects of converging atomic-scale microscopy with atomic-scale materials modelling via first principles approaches. This involves excising parts of the APM data and using these as super-cell inputs to calculations of materials properties via density functional theory. It is our opinion that this represents a major advance for materials science because it enables microscopy to advance microstructure–property relationships to the direct mapping of such relationships based on many-body interactions. As such, this approach has great potential for materials design and development. The final part of this paper focuses on how cloud-based computing represents an exciting frontier of the computational aspects of atom probe microscopy. We discuss the opportunities and the barriers for conducting new materials science through the analysis and visualisation of atom probe data via new generation tools that are cloud-based, and which are managed, curated and governed with significant user-community input and integrated with contemporary electronic laboratory notebook technology.

[1]  Baptiste Gault,et al.  Advances in the calibration of atom probe tomographic reconstruction , 2009 .

[2]  June Gunn Lee Computational Materials Science: An Introduction , 2011 .

[3]  Baptiste Gault,et al.  Reconstructing atom probe data: a review. , 2013, Ultramicroscopy.

[4]  Simon Ringer,et al.  Applying computational geometry techniques for advanced feature analysis in atom probe data. , 2013, Ultramicroscopy.

[5]  S. Ringer,et al.  On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra , 2010 .

[6]  Krishna Rajan,et al.  The future of atom probe tomography , 2012 .

[7]  Olga Wodo,et al.  A graph-theoretic approach for characterization of precipitates from atom probe tomography data , 2013 .

[8]  Daniel J. Blankenberg,et al.  Galaxy: A Web‐Based Genome Analysis Tool for Experimentalists , 2010, Current protocols in molecular biology.

[9]  Geoffrey W. Barton,et al.  Influence of field evaporation on Radial Distribution Functions in Atom Probe Tomography , 2009 .

[10]  J. Cairney,et al.  New atom probe approaches to studying segregation in nanocrystalline materials. , 2013, Ultramicroscopy.

[11]  Baptiste Gault,et al.  Correlated field evaporation as seen by atom probe tomography , 2007 .

[12]  Krishna Rajan,et al.  Combinatorial Materials Sciences: Experimental Strategies for Accelerated Knowledge Discovery , 2008 .

[13]  D. Blavette,et al.  Trajectories of field emitted ions in 3D atom-probe , 1999 .

[14]  W. Vandervorst,et al.  Atom probe analysis of a 3D finFET with high-k metal gate. , 2011, Ultramicroscopy.

[15]  T. Philippe,et al.  Application of Delaunay tessellation for the characterization of solute-rich clusters in atom probe tomography. , 2011, Ultramicroscopy.

[16]  Anna V. Ceguerra,et al.  Quantitative description of atomic architecture in solid solutions: A generalized theory for multicomponent short-range order , 2010 .

[17]  David J. Larson,et al.  Local Electrode Atom Probes , 1998, Microscopy and Microanalysis.

[18]  S. L. Shrestha,et al.  Dynamic reconstruction for atom probe tomography. , 2011, Ultramicroscopy.

[19]  D. J. Larson,et al.  A method for reconstructing and locating atoms on the crystal lattice in three-dimensional atom probe data , 1995 .

[20]  Baptiste Gault,et al.  Atom Probe Microscopy , 2012 .

[21]  A. Nishida,et al.  Dopant distributions in n-MOSFET structure observed by atom probe tomography. , 2009, Ultramicroscopy.

[22]  Michael P Moody,et al.  Short-range order in multicomponent materials. , 2012, Acta crystallographica. Section A, Foundations of crystallography.

[23]  X L Wang,et al.  Direct observation of local potassium variation and its correlation to electronic inhomogeneity in (Ba(1-x)K(x))Fe2As2 pnictide. , 2011, Physical review letters.

[24]  H. H. Liu,et al.  Three-Dimensional Orientation Mapping in the Transmission Electron Microscope , 2011, Science.

[25]  Baptiste Gault,et al.  Influence of surface migration on the spatial resolution of pulsed laser atom probe tomography , 2010 .

[26]  Michael K Miller,et al.  Local magnification effects in the atom probe , 1990 .

[27]  Michael K Miller,et al.  Invited review article: Atom probe tomography. , 2007, The Review of scientific instruments.

[28]  Y. Nozawa,et al.  Dopant characterization in self-regulatory plasma doped fin field-effect transistors by atom probe tomography , 2012 .

[29]  D. Larson,et al.  Magnification and mass resolution in local-electrode atom probes , 1996 .

[30]  Baptiste Gault,et al.  Atom probe crystallography: characterization of grain boundary orientation relationships in nanocrystalline aluminium. , 2011, Ultramicroscopy.

[31]  D. Blavette,et al.  Ordering and phase separation in low supersaturated Ni-Cr-Al alloys : 3D atom probe and Monte Carlo simulation , 1998 .

[32]  S. Ringer,et al.  Nearest neighbour diagnostic statistics on the accuracy of APT solute cluster characterisation , 2013 .

[33]  D. Seidman,et al.  The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. , 2007, Nature materials.

[34]  Baptiste Gault,et al.  Atom probe crystallography: Atomic-scale 3-D orientation mapping , 2012 .

[35]  C. A. English,et al.  An Analysis of the Structure of Irradiation induced Cu-enriched Clusters in Low and High Nickel Welds , 2000 .

[36]  A. Bostel,et al.  A general protocol for the reconstruction of 3D atom probe data , 1995 .

[37]  Timothy C. Petersen,et al.  An electron tomography algorithm for reconstructing 3D morphology using surface tangents of projected scattering interfaces , 2010, Comput. Phys. Commun..

[38]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[39]  M. Lorr Cluster analysis for social scientists , 1938 .

[40]  Michael P Moody,et al.  New Techniques for the Analysis of Fine-Scaled Clustering Phenomena within Atom Probe Tomography (APT) Data , 2007, Microscopy and Microanalysis.

[41]  Daniel Haley,et al.  Crystallographic structural analysis in atom probe microscopy via 3D Hough transformation. , 2011, Ultramicroscopy.

[42]  J. A. Liddle,et al.  Materials analysis with a position‐sensitive atom probe , 1989 .

[43]  Chao Yang,et al.  Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis , 2009, BMC Bioinformatics.

[44]  A. Moore The simulation of FIM desorption patterns , 1981 .

[45]  F Vurpillot,et al.  Structural analyses in three‐dimensional atom probe: a Fourier transform approach , 2001, Journal of microscopy.

[46]  Weitao Yang,et al.  Insights into Current Limitations of Density Functional Theory , 2008, Science.

[47]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[48]  Anna V. Ceguerra,et al.  A three-dimensional Markov field approach for the analysis of atomic clustering in atom probe data , 2010 .

[49]  Reiner Kirchheim,et al.  Investigation of the early stages of decomposition of Cu–0.7at.% Fe with the tomographic atom probe , 2003 .

[50]  G. D. Smith,et al.  Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys. , 2011, Ultramicroscopy.

[51]  B. Krakauer,et al.  Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. , 1993, Physical review. B, Condensed matter.

[52]  Vurpillot,et al.  The shape of field emitters and the ion trajectories in three‐dimensional atom probes , 1999, Journal of microscopy.

[53]  Christophe Sigli,et al.  Atom probe microscopy investigation of Mg site occupancy within delta ' precipitates in an Al-Mg-Li alloy. , 2012 .

[54]  Baptiste Gault,et al.  Atom probe crystallography , 2012 .

[55]  Dieter Isheim,et al.  Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram , 2000, Microscopy and Microanalysis.

[56]  Didier Blavette,et al.  Ordering and phase separation in Ni–Cr–Al: Monte Carlo simulations vs three-dimensional atom probe , 1999 .

[57]  Olof C Hellman,et al.  Efficient sampling for three-dimensional atom probe microscopy data. , 2003, Ultramicroscopy.

[58]  B. P. Geiser,et al.  Definition of Spatial Resolution in Atom Probe Tomography , 2007, Microscopy and Microanalysis.

[59]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[60]  D. Saxey,et al.  Correlated ion analysis and the interpretation of atom probe mass spectra. , 2011, Ultramicroscopy.

[61]  S. Ringer,et al.  Electron tomography using a geometric surface-tangent algorithm: Application to atom probe specimen morphology , 2009 .

[62]  Krishna Rajan,et al.  Atomic-Scale Tomography: A 2020 Vision , 2013, Microscopy and Microanalysis.

[63]  J. D. Olson,et al.  First Data from a Commercial Local Electrode Atom Probe (LEAP) , 2004, Microscopy and Microanalysis.

[64]  S. Ringer,et al.  Atom probe trajectory mapping using experimental tip shape measurements , 2011, Journal of microscopy.

[65]  F Vurpillot,et al.  Application of Fourier transform and autocorrelation to cluster identification in the three‐dimensional atom probe , 2004, Journal of microscopy.

[66]  Michael K Miller,et al.  Atom Probe Field Ion Microscopy , 1996 .

[67]  Baptiste Gault,et al.  Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. , 2009, Ultramicroscopy.

[68]  Baptiste Gault,et al.  Spatial Resolution in Atom Probe Tomography , 2010, Microscopy and Microanalysis.

[69]  Jason Schneir,et al.  Spatial Distribution Maps for Atom Probe Tomography , 2007, Microscopy and Microanalysis.

[70]  S. Ringer,et al.  A New Approach to the Determination of Concentration Profiles in Atom Probe Tomography , 2012, Microscopy and Microanalysis.

[71]  Shaun Cole,et al.  Cluster correlation functions in N-body simulations , 1996 .

[72]  D. Seidman,et al.  Measurement of the Gibbsian interfacial excess of solute at an interface of arbitrary geometry using three-dimensional atom probe microscopy , 2002 .

[73]  Torben Boll,et al.  Investigation of the Site Occupation of Atoms in Pure and Doped TiA1/Ti3Al Intermetallic , 2006, IVNC 2006.

[74]  Baptiste Gault,et al.  Origin of the spatial resolution in atom probe microscopy , 2009 .

[75]  K. Rajan,et al.  Visions of Atomic-Scale Tomography , 2012, Microscopy Today.

[76]  S. Ringer,et al.  Theory of solute clustering in materials for atom probe , 2011 .

[77]  S. Ringer,et al.  Correlating spatial, temporal and chemical information in atom probe data: new insights from multiple evaporation in microalloyed steels , 2013 .

[78]  G. D. Smith,et al.  Combined atomic–scale modelling and experimental studies of nucleation in the solid state , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[79]  David J. Larson,et al.  Atom Probe Tomography 2012 , 2012 .

[80]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[81]  Baptiste Gault,et al.  Estimation of the Reconstruction Parameters for Atom Probe Tomography , 2008, Microscopy and Microanalysis.

[82]  Peter V Liddicoat,et al.  Nanostructural hierarchy increases the strength of aluminium alloys. , 2010, Nature communications.

[83]  Chennupati Jagadish,et al.  Magnetism of Co-doped ZnO epitaxially grown on a ZnO substrate , 2012 .

[84]  A. Cerezo,et al.  A procedure for quantification of precipitate microstructures from three-dimensional atom probe data. , 2003, Ultramicroscopy.

[85]  Rajkumar Buyya,et al.  Article in Press Future Generation Computer Systems ( ) – Future Generation Computer Systems Cloud Computing and Emerging It Platforms: Vision, Hype, and Reality for Delivering Computing as the 5th Utility , 2022 .

[86]  Michael K Miller,et al.  Atom Probe Tomography: Analysis at the Atomic Level , 2012 .

[87]  Baptiste Gault,et al.  Spatial decomposition of molecular ions within 3D atom probe reconstructions. , 2013, Ultramicroscopy.

[88]  Alfred Cerezo,et al.  Performance of an energy-compensated three-dimensional atom probe , 1998 .