A flexoelectricity-enabled ultrahigh piezoelectric effect of a polymeric composite foam as a strain-gradient electric generator

All dielectric materials including ceramics, semiconductors, biomaterials, and polymers have the property of flexoelectricity, which opens a fertile avenue to sensing, actuation, and energy harvesting by a broad range of materials. However, the flexoelectricity of solids is weak at the macroscale. Here, we achieve an ultrahigh flexoelectric effect via a composite foam based on PDMS and CCTO nanoparticles. The mass- and deformability-specific flexoelectricity of the foam exceeds 10,000 times that of the solid matrix under compression, yielding a density-specific equivalent piezoelectric coefficient 120 times that of PZT. The flexoelectricity output remains stable in 1,000,000 deformation cycles, and a portable sample can power LEDs and charge mobile phones and Bluetooth headsets. Our work provides a route to exploiting flexible and light-weight materials with highly sensitive omnidirectional electromechanical coupling that have applications in sensing, actuation, and scalable energy harvesting.

[1]  H. Verweij,et al.  Piezoelectric porous α-quartz membrane by aqueous gel-casting with enhanced antifouling and mechanical properties , 2022, Journal of the European Ceramic Society.

[2]  Long-qing Chen,et al.  Flexoelectric control of physical properties by atomic force microscopy , 2021, Applied Physics Reviews.

[3]  Yiping Wang,et al.  Flexo-photovoltaic effect in MoS2 , 2021, Nature Nanotechnology.

[4]  P. Sharma,et al.  Flexoelectricity in soft elastomers and the molecular mechanisms underpinning the design and emergence of giant flexoelectricity , 2021, Proceedings of the National Academy of Sciences.

[5]  Xiaodong Xu,et al.  Unraveling Strain Gradient Induced Electromechanical Coupling in Twisted Double Bilayer Graphene Moiré Superlattices , 2021, Advanced materials.

[6]  Jianxiang Wang,et al.  Ultrahigh flexoelectric effect of 3D interconnected porous polymers: modelling and verification , 2021 .

[7]  I. Burgert,et al.  Enhanced mechanical energy conversion with selectively decayed wood , 2021, Science Advances.

[8]  Kenji Watanabe,et al.  Visualization of moiré superlattices , 2020, Nature Nanotechnology.

[9]  Zhong Lin Wang,et al.  Flexoelectronics of centrosymmetric semiconductors , 2020, Nature Nanotechnology.

[10]  L. You,et al.  Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect , 2020, Nature Communications.

[11]  Xiaoning Jiang,et al.  Photoflexoelectric effect in halide perovskites , 2020, Nature Materials.

[12]  Lu Zhang,et al.  Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode , 2020, Nature Communications.

[13]  T. Kyu,et al.  Tuning Flexoelectric Effect in Polymer Electrolyte Membranes via Cation Selection for Potential Energy Harvesting Applications , 2020 .

[14]  Long-qing Chen,et al.  Flexoelectricity in solids: Progress, challenges, and perspectives , 2019 .

[15]  Jianguo Zhu,et al.  Ultrahigh Performance in Lead-free Piezoceramics Utilizing a Relaxor Slush Polar State with Multiphase Coexistence. , 2019, Journal of the American Chemical Society.

[16]  M. Alexe,et al.  Strain-gradient mediated local conduction in strained bismuth ferrite films , 2019, Nature Communications.

[17]  L. Fei,et al.  Flexoelectric materials and their related applications: A focused review , 2019, Journal of Advanced Ceramics.

[18]  Di Liu,et al.  A constant current triboelectric nanogenerator arising from electrostatic breakdown , 2019, Science Advances.

[19]  L. Molina‐Luna,et al.  Enabling nanoscale flexoelectricity at extreme temperature by tuning cation diffusion , 2018, Nature Communications.

[20]  Baojin Chu,et al.  Energy harvesting by exploiting the enhanced flexoelectric-like response of reduced (Na 0.5 Bi 0.5 ) 0.92 Ba 0.08 TiO 3 ceramics , 2018, Journal of the European Ceramic Society.

[21]  M. Alexe,et al.  Flexo-photovoltaic effect , 2018, Science.

[22]  Zhuo Xu,et al.  Ultrahigh piezoelectricity in ferroelectric ceramics by design , 2018, Nature Materials.

[23]  Seung Chul Chae,et al.  Selective control of multiple ferroelectric switching pathways using a trailing flexoelectric field , 2018, Nature Nanotechnology.

[24]  Dragan Damjanovic,et al.  Flexoelectricity in Bones , 2018, Advanced materials.

[25]  J. Zhai,et al.  Ultrahigh Piezoelectric Properties in Textured (K,Na)NbO3‐Based Lead‐Free Ceramics , 2018, Advanced materials.

[26]  Jinlan Wang,et al.  An organic-inorganic perovskite ferroelectric with large piezoelectric response , 2017, Science.

[27]  Jianguo Zhu,et al.  Superior Piezoelectric Properties in Potassium–Sodium Niobate Lead‐Free Ceramics , 2016, Advanced materials.

[28]  J. Narváez,et al.  Enhanced flexoelectric-like response in oxide semiconductors , 2016, Nature.

[29]  Jie Wang,et al.  A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring , 2016, Science Advances.

[30]  K. Kalantar-zadeh,et al.  Elastomeric composites for flexible microwave substrates , 2016 .

[31]  M. F. Ain,et al.  A Short Review on Copper Calcium Titanate (CCTO) Electroceramic: Synthesis, Dielectric Properties, Film Deposition, and Sensing Application , 2016, Nano-Micro Letters.

[32]  Pradeep Sharma,et al.  Flexoelectricity: A Perspective on an Unusual Electromechanical Coupling , 2016 .

[33]  Umesh Kumar Bhaskar,et al.  A flexoelectric microelectromechanical system on silicon. , 2016, Nature nanotechnology.

[34]  Irene Arias,et al.  Constructive and Destructive Interplay Between Piezoelectricity and Flexoelectricity in Flexural Sensors and Actuators , 2015 .

[35]  Seung Jin Kim,et al.  Enhancement of the anisotropic photocurrent in ferroelectric oxides by strain gradients. , 2015, Nature nanotechnology.

[36]  Xuecang Geng,et al.  Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review. , 2015, Progress in materials science.

[37]  A. Erturk,et al.  Nanoscale flexoelectric energy harvesting , 2014 .

[38]  Pradeep Sharma,et al.  Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling , 2014 .

[39]  P. Sharma,et al.  Flexoelectricity in soft materials and biological membranes , 2014 .

[40]  Xiaoning Jiang,et al.  Flexoelectric nano-generator: Materials, structures and devices , 2013 .

[41]  F. Yuan,et al.  Flexoelectric sensing using a multilayered barium strontium titanate structure , 2013 .

[42]  Pavlo Zubko,et al.  Flexoelectric Effect in Solids , 2013 .

[43]  J. Miao,et al.  Giant Flexoelectric Polarization in a Micromachined Ferroelectric Diaphragm , 2013 .

[44]  D. Salem,et al.  Flexoelectricity in several thermoplastic and thermosetting polymers , 2012 .

[45]  A. Gruverman,et al.  Supplementary Materials for Mechanical Writing of Ferroelectric Polarization , 2012 .

[46]  Yu Wang,et al.  Strain gradient induced electric polarization in α-phase polyvinylidene fluoride films under bending conditions , 2011, 1109.4016.

[47]  A Lubk,et al.  Flexoelectric rotation of polarization in ferroelectric thin films. , 2011, Nature materials.

[48]  Ming Li,et al.  Extrinsic origins of the apparent relaxorlike behavior in CaCu3Ti4O12 ceramics at high temperatures: A cautionary tale , 2011 .

[49]  D. Xue,et al.  Elastic, piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3- 50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary , 2011 .

[50]  Neil M. White,et al.  Improving Output Power of Piezoelectric Energy Harvesters using Multilayer Structures , 2011 .

[51]  Neil M. White,et al.  A multilayer thick-film PZT actuator for MEMs applications , 2006 .

[52]  C. Bulutay,et al.  Theoretical study of the insulating oxides and nitrides: SiO2, GeO2, Al2O3, Si3N4, and Ge3N4 , 2006, cond-mat/0610176.

[53]  A. Petrov,et al.  Electricity and mechanics of biomembrane systems: flexoelectricity in living membranes. , 2006, Analytica chimica acta.

[54]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[55]  F. Morrison,et al.  CaCu3Ti4O12: One-step internal barrier layer capacitor , 2002 .

[56]  Takeshi Yamada,et al.  Piezoelectricity of a high‐content lead zirconate titanate/polymer composite , 1982 .