On the minimum degree of minimal Ramsey graphs

A graph G is r-Ramsey for a graph H, denoted by G ź ( H ) r , if every r-colouring of the edges of G contains a monochromatic copy of H. The graph G is called r-Ramsey-minimal for H if it is r-Ramsey for H but no proper subgraph of G possesses this property. Let s r ( H ) denote the smallest minimum degree of G over all graphs G that are r-Ramsey-minimal for H. The study of the parameter s 2 was initiated by Burr, Erdźs, and Lovasz in 1976 when they showed that for the clique s 2 ( K k ) = ( k - 1 ) 2 . In this paper, we study the dependency of s r ( K k ) on r and show that, under the condition that k is constant, s r ( K k ) = r 2 ź polylog r . We also give an upper bound on s r ( K k ) which is polynomial in both r and k, and we show that c r 2 ln ź r ≤ s r ( K 3 ) ≤ C r 2 ln 2 ź r for some constants c , C 0 .

[1]  Honghui Wan Upper bounds for Ramsey numbers R (3,3,…,3) and Schur numbers , 1997 .

[2]  Vojtech Rödl,et al.  On Size Ramsey Numbers of Graphs with Bounded Degree , 2000, Comb..

[3]  Honghui Wan,et al.  Upper bounds for ramsey numbers R(3, 3, ⋖, 3) and Schur numbers , 1997, J. Graph Theory.

[4]  Vojtech Rödl,et al.  On Ramsey Minimal Graphs , 2008, SIAM J. Discret. Math..

[5]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[6]  Yoshiharu Kohayakawa,et al.  The size-Ramsey number of trees , 1995 .

[7]  Ingo Schiermeyer,et al.  The Ramsey number r(C7, C7, C7) , 2003, Discuss. Math. Graph Theory.

[8]  T. Bohman The triangle-free process , 2008, 0806.4375.

[9]  Andrzej Dudek,et al.  On generalized Ramsey numbers of Erdős and Rogers , 2014, J. Comb. Theory, Ser. B.

[10]  Paul Erdös,et al.  The Construction of Certain Graphs , 1966, Canadian Journal of Mathematics.

[11]  James B. Shearer,et al.  On the Independence Number of Sparse Graphs , 1995, Random Struct. Algorithms.

[12]  Michael Krivelevich,et al.  Ks-Free Graphs Without Large Kr-Free Subgraphs , 1994, Combinatorics, Probability and Computing.

[13]  Tom Bohman,et al.  Dynamic concentration of the triangle‐free process , 2013, Random Struct. Algorithms.

[14]  Lingsheng Shi,et al.  Upper bounds for Ramsey numbers , 2003, Discret. Math..

[15]  Joel H. Spencer,et al.  Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..

[16]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[17]  P. Erdös Some remarks on the theory of graphs , 1947 .

[18]  James B. Shearer,et al.  A note on the independence number of triangle-free graphs , 1983, Discret. Math..

[19]  József Beck,et al.  On size Ramsey number of paths, trees, and circuits. I , 1983, J. Graph Theory.

[20]  P. Erdös,et al.  ON GRAPHS OF RAMSEY TYPE , 1976 .

[21]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[22]  Jacob Fox,et al.  The minimum degree of Ramsey-minimal graphs , 2007 .

[23]  Andrzej Dudek,et al.  On Generalized Ramsey Numbers for 3‐Uniform Hypergraphs , 2013, J. Graph Theory.

[24]  Xiaodong Xu,et al.  Constructive Lower Bounds on Classical Multicolor Ramsey Numbers , 2004, Electron. J. Comb..

[25]  Vojtech Rödl,et al.  On the use of senders in generalized ramsey theory for graphs , 1985, Discret. Math..

[26]  Béla Bollobás,et al.  Graphs without large triangle free subgraphs , 1991, Discret. Math..

[27]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[28]  P. Erdos,et al.  The size Ramsey number , 1978 .

[29]  D. Conlon A new upper bound for diagonal Ramsey numbers , 2006, math/0607788.

[30]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[31]  Rephael Wenger,et al.  Extremal graphs with no C4's, C6's, or C10's , 1991, J. Comb. Theory, Ser. B.

[32]  Joel H. Spencer,et al.  Ramsey's Theorem - A New Lower Bound , 1975, J. Comb. Theory, Ser. A.

[33]  Andrzej Dudek,et al.  On Ks-free subgraphs in Ks+k-free graphs and vertex Folkman numbers , 2011, Comb..