Spatiotemporal Differences in the Regional Cortical Plate and Subplate Volume Growth during Fetal Development.

The regional specification of the cerebral cortex can be described by protomap and protocortex hypotheses. The protomap hypothesis suggests that the regional destiny of cortical neurons and the relative size of the cortical area are genetically determined early during embryonic development. The protocortex hypothesis suggests that the regional growth rate is predominantly shaped by external influences. In order to determine regional volumes of cortical compartments (cortical plate (CP) or subplate (SP)) and estimate their growth rates, we acquired T2-weighted in utero MRIs of 40 healthy fetuses and grouped them into early (<25.5 GW), mid- (25.5-31.6 GW), and late (>31.6 GW) prenatal periods. MRIs were segmented into CP and SP and further parcellated into 22 gyral regions. No significant difference was found between periods in regional volume fractions of the CP or SP. However, during the early and mid-prenatal periods, we found significant differences in relative growth rates (% increase per GW) between regions of cortical compartments. Thus, the relative size of these regions are most likely conserved and determined early during development whereas more subtle growth differences between regions are fine-tuned later, during periods of peak thalamocortical growth. This is in agreement with both the protomap and protocortex hypothesis.

[1]  M. Mallar Chakravarty,et al.  Normative brain size variation and brain shape diversity in humans , 2018, Science.

[2]  S. Dehaene,et al.  Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe , 2002, Neuron.

[3]  John W. Harwell,et al.  Similar patterns of cortical expansion during human development and evolution , 2010, Proceedings of the National Academy of Sciences.

[4]  I. Kostović,et al.  Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix , 2018, Journal of anatomy.

[5]  B. Finlay,et al.  Modeling Transformations of Neurodevelopmental Sequences across Mammalian Species , 2013, The Journal of Neuroscience.

[6]  M. Petrides,et al.  Morphological patterns of the postcentral sulcus in the human brain , 2010, The Journal of comparative neurology.

[7]  D. J. Ardesch,et al.  Genetic mapping and evolutionary analysis of human-expanded cognitive networks , 2019, Nature Communications.

[8]  S. Mcconnell,et al.  Regional differences in the developing cerebral cortex revealed by ephrin-A5 expression. , 1999, Cerebral cortex.

[9]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[10]  D. Frost,et al.  Tangential organization of thalamic projections to the neocortex in the mouse , 1980, The Journal of comparative neurology.

[11]  G. Clowry,et al.  Progressive loss of PAX6, TBR2, NEUROD and TBR1 mRNA gradients correlates with translocation of EMX2 to the cortical plate during human cortical development , 2008, The European journal of neuroscience.

[12]  D. O'Leary,et al.  Do cortical areas emerge from a protocortex? , 1989, Trends in Neurosciences.

[13]  Mingfeng Li,et al.  Temporal Specification and Bilaterality of Human Neocortical Topographic Gene Expression , 2014, Neuron.

[14]  D. O'Leary,et al.  Regulation of area identity in the mammalian neocortex by Emx2 and Pax6. , 2000, Science.

[15]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[16]  S. Anderson,et al.  Genetic control of cortical regionalization and connectivity. , 1999, Cerebral cortex.

[17]  Onur Afacan,et al.  Fetal MRI: A Technical Update with Educational Aspirations. , 2014, Concepts in magnetic resonance. Part A, Bridging education and research.

[18]  Daniel Rueckert,et al.  Fast Volume Reconstruction from Motion Corrupted Stacks of 2D Slices , 2015, IEEE Transactions on Medical Imaging.

[19]  P. Huttenlocher,et al.  Regional differences in synaptogenesis in human cerebral cortex , 1997, The Journal of comparative neurology.

[20]  H. Kinney,et al.  Late Oligodendrocyte Progenitors Coincide with the Developmental Window of Vulnerability for Human Perinatal White Matter Injury , 2001, The Journal of Neuroscience.

[21]  C. Kroenke,et al.  How Forces Fold the Cerebral Cortex , 2018, The Journal of Neuroscience.

[22]  N. Jovanov-Milošević,et al.  Populations of subplate and interstitial neurons in fetal and adult human telencephalon , 2010, Journal of anatomy.

[23]  Karl Zilles,et al.  Cyto- and receptor architectonic mapping of the human brain. , 2018, Handbook of clinical neurology.

[24]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[25]  P. Rakić,et al.  A novel cytoarchitectonic area induced experimentally within the primate visual cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[26]  I. Kostović,et al.  Interactive histogenesis of axonal strata and proliferative zones in the human fetal cerebral wall , 2018, Brain Structure and Function.

[27]  Matthew G. Keefe,et al.  Development and Arealization of the Cerebral Cortex , 2019, Neuron.

[28]  D. V. von Cramon,et al.  Deep sulcal landmarks provide an organizing framework for human cortical folding. , 2008, Cerebral cortex.

[29]  P S Goldman-Rakic,et al.  D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[30]  I. Kostović,et al.  Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study , 1988, The Journal of comparative neurology.

[31]  J. Rubenstein,et al.  Regionalization of the prosencephalic neural plate. , 1998, Annual review of neuroscience.

[32]  Deniz Erdogmus,et al.  Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging , 2017, IEEE Transactions on Medical Imaging.

[33]  A. Schleicher,et al.  A quantitative approach to cytoarchitectonics , 2004, Anatomy and Embryology.

[34]  P. Huttenlocher,et al.  Synaptic density in human frontal cortex — Developmental changes and effects of aging , 1979, Brain Research.

[35]  Peter Thier,et al.  Parietal Lobe Contributions to Orientation in 3D Space , 1997 .

[36]  Anjen Chenn,et al.  Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors , 2002, Science.

[37]  Allan R. Jones,et al.  Comprehensive transcriptional map of primate brain development , 2016, Nature.

[38]  C. Garel,et al.  Fetal cerebral cortex: normal gestational landmarks identified using prenatal MR imaging. , 2001, AJNR. American journal of neuroradiology.

[39]  G. Elston,et al.  The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey , 2001, The Journal of Neuroscience.

[40]  Ivica Kostović,et al.  Primate-Specific Origins and Migration of Cortical GABAergic Neurons , 2009, Frontiers in neuroanatomy.

[41]  P. Ellen Grant,et al.  Exploring early human brain development with structural and physiological neuroimaging , 2019, NeuroImage.

[42]  C. Blakemore,et al.  Factors involved in the establishment of specific interconnections between thalamus and cerebral cortex. , 1990, Cold Spring Harbor symposia on quantitative biology.

[43]  Paul C. Fletcher,et al.  From genes to folds: a review of cortical gyrification theory , 2014, Brain Structure and Function.

[44]  P. Ellen Grant,et al.  Automatic labeling of cortical sulci for the human fetal brain based on spatio-temporal information of gyrification , 2019, NeuroImage.

[45]  Z. Molnár,et al.  Regional scattering of primate subplate , 2016, Proceedings of the National Academy of Sciences.

[46]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[47]  Alan C. Evans,et al.  Prediction of brain maturity based on cortical thickness at different spatial resolutions , 2015, NeuroImage.

[48]  A. Schleicher,et al.  Broca's region revisited: Cytoarchitecture and intersubject variability , 1999, The Journal of comparative neurology.

[49]  Anders M. Dale,et al.  ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide , 2017, NeuroImage.

[50]  F. Sanides THE CYTO-MYELOARCHITECTURE OF THE HUMAN FRONTAL LOBE AND ITS RELATION TO PHYLOGENETIC DIFFERENTIATION OF THE CEREBRAL CORTEX. , 1964, Journal fur Hirnforschung.

[51]  Joseph Altman,et al.  The Human Brain During the Early First Trimester , 2006 .

[52]  Y. Samson,et al.  "Sulcal root" generic model: a hypothesis to overcome the variability of the human cortex folding patterns. , 2005, Neurologia medico-chirurgica.

[53]  Otto D. Creutzfeldt,et al.  Generality of the functional structure of the neocortex , 1977, Naturwissenschaften.

[54]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[55]  G. Meyer Genetic control of neuronal migrations in human cortical development. , 2006, Advances in anatomy, embryology, and cell biology.

[56]  Duan Xu,et al.  Extensive migration of young neurons into the infant human frontal lobe , 2016, Science.

[57]  Anastassia Stoykova,et al.  Gene networks controlling early cerebral cortex arealization , 2006, The European journal of neuroscience.

[58]  Hao Huang,et al.  Growth of Thalamocortical Fibers to the Somatosensory Cortex in the Human Fetal Brain , 2017, Front. Neurosci..

[59]  D. Prayer,et al.  Echo-planar FLAIR Sequence Improves Subplate Visualization in Fetal MRI of the Brain. , 2019, Radiology.

[60]  P. Rakić,et al.  Genetic control of cortical development. , 1999, Cerebral cortex.

[61]  Alan C. Evans,et al.  Quantitative and Qualitative Analysis of Transient Fetal Compartments during Prenatal Human Brain Development , 2016, Front. Neuroanat..

[62]  Milos Judas,et al.  Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. , 2002, Cerebral cortex.

[63]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[64]  Armin Raznahan,et al.  How Does Your Cortex Grow? , 2011, The Journal of Neuroscience.

[65]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[66]  Lana Vasung,et al.  Insights from in vitro fetal magnetic resonance imaging of cerebral development. , 2009, Seminars in perinatology.

[67]  Leah Krubitzer,et al.  Effects of bilateral enucleation on the size of visual and nonvisual areas of the brain. , 2009, Cerebral cortex.

[68]  Colin Blakemore,et al.  Development of the human cerebral cortex: Boulder Committee revisited , 2008, Nature Reviews Neuroscience.

[69]  Giuseppe Iaria,et al.  Occipital sulci of the human brain: Variability and probability maps , 2007, The Journal of comparative neurology.

[70]  A. Pierani,et al.  Migration Speed of Cajal-Retzius Cells Modulated by Vesicular Trafficking Controls the Size of Higher-Order Cortical Areas , 2015, Current Biology.

[71]  T. Woolsey,et al.  Somatosensory Cortex: Structural Alterations following Early Injury to Sense Organs , 1973, Science.

[72]  S. Blakemore,et al.  Development of the Cerebral Cortex across Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in Cortical Volume, Surface Area, and Thickness , 2017, The Journal of Neuroscience.

[73]  R. Hevner Development of Connections in the Human Visual System During Fetal Mid‐Gestation: A DiI‐Tracing Study , 2000, Journal of neuropathology and experimental neurology.

[74]  J. Gilmore,et al.  Dynamic Development of Regional Cortical Thickness and Surface Area in Early Childhood. , 2015, Cerebral cortex.

[75]  Simon K. Warfield,et al.  A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth , 2017, Scientific Reports.

[76]  Colin Studholme,et al.  Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. , 2012, Cerebral cortex.

[77]  R L Sidman,et al.  SUPRAVITAL DNA SYNTHESIS IN THE DEVELOPING HUMAN AND MOUSE BRAIN , 1968, Journal of neuropathology and experimental neurology.

[78]  Pasko Rakic,et al.  Renewed focus on the developing human neocortex , 2010, Journal of anatomy.

[79]  C. Shatz,et al.  The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. , 1994, Annual review of neuroscience.

[80]  E. Callaway,et al.  Developmental Sculpting of Dendritic Morphology of Layer 4 Neurons in Visual Cortex: Influence of Retinal Input , 2011, The Journal of Neuroscience.

[81]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[82]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[83]  Alan C. Evans,et al.  Quantitative In vivo MRI Assessment of Structural Asymmetries and Sexual Dimorphism of Transient Fetal Compartments in the Human Brain. , 2019, Cerebral cortex.

[84]  O. Vogt,et al.  Die vergleichend-architektonische und die vergleichend-reizphysiologische Felderung der Großhirnrinde unter besonderer Berücksichtigung der menschlichen , 1926, Naturwissenschaften.

[85]  D. Geschwind,et al.  Cortical Evolution: Judge the Brain by Its Cover , 2013, Neuron.

[86]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[87]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[88]  P. Rakić,et al.  Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain , 1990, The Journal of comparative neurology.

[89]  G.-J. Qu,et al.  Postnatal development of GABAergic interneurons in the neocortical subplate of mice , 2016, Neuroscience.

[90]  F. Gilles,et al.  Gyral development of the human brain , 1977, Transactions of the American Neurological Association.

[91]  A. Toga,et al.  Mapping brain maturation , 2006, Trends in Neurosciences.

[92]  Michael Petrides,et al.  Precentral sulcal complex of the human brain: Morphology and statistical probability maps , 2005, The Journal of comparative neurology.

[93]  G. Orban,et al.  Extracting 3D from Motion: Differences in Human and Monkey Intraparietal Cortex , 2002, Science.

[94]  G. Clowry,et al.  Thalamocortical Afferents Innervate the Cortical Subplate much Earlier in Development in Primate than in Rodent , 2019, Cerebral cortex.

[95]  H. Karnath New insights into the functions of the superior temporal cortex , 2001, Nature Reviews Neuroscience.

[96]  N. Zečević,et al.  Early oligodendrocyte progenitor cells in the human fetal telencephalon , 2003, Glia.

[97]  Z. Molnár,et al.  Choreography of early thalamocortical development. , 2003, Cerebral cortex.

[98]  G. Elston,et al.  Distribution and patterns of connectivity of interneurons containing calbindin, calretinin, and parvalbumin in visual areas of the occipital and temporal lobes of the macaque monkey , 1999, The Journal of comparative neurology.

[99]  V. Borrell,et al.  How Cells Fold the Cerebral Cortex , 2018, The Journal of Neuroscience.

[100]  P. Holland,et al.  Robust regression using iteratively reweighted least-squares , 1977 .

[101]  Michael Petrides,et al.  The morphology and variability of the caudal rami of the superior temporal sulcus , 2012, The European journal of neuroscience.

[102]  C. Shatz How are specific connections formed between thalamus and cortex? , 1992, Current Opinion in Neurobiology.

[103]  Anirvan Ghosh,et al.  Requirement for subplate neurons in the formation of thalamocortical connections , 1990, Nature.

[104]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[105]  Milos Judas,et al.  In vitro MRI of brain development. , 2006, European journal of radiology.

[106]  H. T. ten Donkelaar,et al.  Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex , 2018, Front. Neuroanat..

[107]  D. O'Leary,et al.  Patterning centers, regulatory genes and extrinsic mechanisms controlling arealization of the neocortex , 2002, Current Opinion in Neurobiology.

[108]  H. Kinney,et al.  Late Development of the GABAergic System in the Human Cerebral Cortex and White Matter , 2011, Journal of neuropathology and experimental neurology.

[109]  G. Sedmak,et al.  The total number of white matter interstitial neurons in the human brain , 2019, Journal of anatomy.

[110]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[111]  K Amunts,et al.  A stereological approach to human cortical architecture: identification and delineation of cortical areas , 2000, Journal of Chemical Neuroanatomy.

[112]  P. Rakic Specification of cerebral cortical areas. , 1988, Science.

[113]  K. Amunts,et al.  Architectonic Mapping of the Human Brain beyond Brodmann , 2015, Neuron.

[114]  Tomoki Arichi,et al.  Specialization and integration of functional thalamocortical connectivity in the human infant , 2015, Proceedings of the National Academy of Sciences.

[115]  Daniel J. Miller,et al.  Spatiotemporal transcriptomic divergence across human and macaque brain development , 2018, Science.

[116]  Alan C. Evans,et al.  Trajectories of cortical thickness maturation in normal brain development — The importance of quality control procedures , 2016, NeuroImage.