Stationary measures and phase transition for a class of probabilistic cellular automata

We discuss various properties of Probabilistic Cellular Automata, such as the structure of the set of stationary measures and multiplicity of stationary measures (or phase transition) for reversible models.

[1]  Christian Maes,et al.  The (non-)Gibbsian nature of states invariant under stochastic transformations , 1994 .

[2]  H. Künsch Time reversal and stationary Gibbs measures , 1984 .

[3]  J. Lebowitz,et al.  Statistical mechanics of probabilistic cellular automata , 1990 .

[4]  Gerardo Sanz,et al.  Stochastic comparisons for general probabilistic cellular automata ( , 2000 .

[5]  Senya Shlosman,et al.  Ergodicity of probabilistic cellular automata: A constructive criterion , 1991 .

[6]  Senya Shlosman,et al.  When is an interacting particle system ergodic? , 1993 .

[7]  X. Guyon Champs aléatoires sur un réseau , 1993 .

[8]  Kenji Handa Entropy production per site in (nonreversible) spin-flip processes , 1996 .

[9]  Eugene R. Speer,et al.  CRITICAL DROPLETS IN METASTABLE STATES OF PROBABILISTIC CELLULAR AUTOMATA , 1998, cond-mat/9810077.

[10]  V. A. Malyshev,et al.  General Scheme of Cluster Expansion , 1991 .

[11]  Stefan Grosskinsky Warwick,et al.  Interacting Particle Systems , 2016 .

[12]  Roelof Kuik,et al.  From PCA's to equilibrium systems and back , 1989 .

[13]  N. B. Vasilyev Bernoulli and Markov stationary measures in discrete local interactions , 1978 .

[14]  宮沢 政清,et al.  P. Bremaud 著, Markov Chains, (Gibbs fields, Monte Carlo simulation and Queues), Springer-Verlag, 1999年 , 2000 .

[15]  D. Dawson Synchronous and Asynchronous Reversible Markov Systems(1) , 1975, Canadian Mathematical Bulletin.

[16]  Grinstein,et al.  Statistical mechanics of probabilistic cellular automata. , 1985, Physical review letters.

[17]  H. Künsch,et al.  Non reversible stationary measures for infinite interacting particle systems , 1984 .

[18]  A. Barron THE STRONG ERGODIC THEOREM FOR DENSITIES: GENERALIZED SHANNON-MCMILLAN-BREIMAN THEOREM' , 1985 .

[19]  F. Papangelou GIBBS MEASURES AND PHASE TRANSITIONS (de Gruyter Studies in Mathematics 9) , 1990 .

[20]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[21]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[22]  F. Martinelli Lectures on Glauber dynamics for discrete spin models , 1999 .

[23]  R. Holley,et al.  Free energy in a Markovian model of a lattice spin system , 1971 .

[24]  Vadim Malyshev,et al.  Gibbs Random Fields: Cluster Expansions , 1991 .

[25]  R. L. Dobrushin,et al.  Stochastic cellular systems : ergodicity, memory, morphogenesis , 1990 .

[26]  A. Cohen On random fields , 1967 .

[27]  D. Vere-Jones Markov Chains , 1972, Nature.

[28]  Leonid Koralov,et al.  Gibbs Random Fields , 2012 .