Model Error Estimation Employing an Ensemble Data Assimilation Approach

Abstract A methodology for model error estimation is proposed and examined in this study. It provides estimates of the dynamical model state, the bias, and the empirical parameters by combining three approaches: 1) ensemble data assimilation, 2) state augmentation, and 3) parameter and model bias estimation. Uncertainties of these estimates are also determined, in terms of the analysis and forecast error covariances, employing the same methodology. The model error estimation approach is evaluated in application to Korteweg–de Vries–Burgers (KdVB) numerical model within the framework of maximum likelihood ensemble filter (MLEF). Experimental results indicate improved filter performance due to model error estimation. The innovation statistics also indicate that the estimated uncertainties are reliable. On the other hand, neglecting model errors—either in the form of an incorrect model parameter, or a model bias—has detrimental effects on data assimilation, in some cases resulting in filter divergence. Altho...

[1]  Robert Atlas,et al.  Assimilation of SSM/I-Derived Surface Rainfall and Total Precipitable Water for Improving the GEOS Analysis for Climate Studies , 2000 .

[2]  Robert Vautard,et al.  Reducing systematic errors by empirically correcting model errors , 2000 .

[3]  Y. Sasaki SOME BASIC FORMALISMS IN NUMERICAL VARIATIONAL ANALYSIS , 1970 .

[4]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[5]  John Derber,et al.  The Use of TOVS Cloud-Cleared Radiances in the NCEP SSI Analysis System , 1998 .

[6]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[7]  Lance M. Leslie,et al.  Tropical Cyclone Prediction Using a Barotropic Model Initialized by a Generalized Inverse Method , 1993 .

[8]  T. Hamill,et al.  A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme , 2000 .

[9]  Peter Jan van Leeuwen,et al.  An Ensemble Smoother with Error Estimates , 2001 .

[10]  Nancy Nichols,et al.  Treatment of systematic errors in sequential data assimilation , 1999 .

[11]  M. Zupanski Maximum Likelihood Ensemble Filter: Theoretical Aspects , 2005 .

[12]  S. Cohn,et al.  An Introduction to Estimation Theory , 1997 .

[13]  James A. Hansen Accounting for Model Error in Ensemble-Based State Estimation and Forecasting , 2002 .

[14]  J. Derber A Variational Continuous Assimilation Technique , 1989 .

[15]  A. Segers,et al.  Variance reduced ensemble Kalman filtering , 2001 .

[16]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[17]  T. Palmer Extended-range atmospheric prediction and the Lorenz model , 1993 .

[18]  Milija Zupanski,et al.  Regional Four-Dimensional Variational Data Assimilation in a Quasi-Operational Forecasting Environment , 1993 .

[19]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[20]  Nancy Nichols,et al.  Adjoint Methods in Data Assimilation for Estimating Model Error , 2000 .

[21]  J. C. Muccino,et al.  Generalized inversion of the Korteweg-de Vries equation , 2002 .

[22]  P. Houtekamer,et al.  Ensemble size, balance, and model-error representation in an ensemble Kalman filter , 2002 .

[23]  Mark DeMaria,et al.  Optimization of a Hurricane Track Forecast Model with the Adjoint Model Equations , 1993 .

[24]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[25]  Ionel M. Navon,et al.  An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation , 1992 .

[26]  Dimitri D. Vvedensky Partial differential equations - with Mathematica , 1993, Physics series.

[27]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[28]  G. Kivman,et al.  Sequential parameter estimation for stochastic systems , 2003 .

[29]  Jeffrey L. Anderson A Local Least Squares Framework for Ensemble Filtering , 2003 .

[30]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[31]  Nancy Nichols,et al.  Estimation of systematic error in an equatorial ocean model using data assimilation , 2002 .

[32]  L. Leslie,et al.  Generalized inversion of a global numerical weather prediction model , 1996 .

[33]  F. X. Le Dimet,et al.  Variational and Optimization Methods in Meteorology : A Review by , 1988 .

[34]  Dusanka Zupanski,et al.  Fine-Resolution 4DVAR Data Assimilation for the Great Plains Tornado Outbreak of 3 May 1999 , 2002 .

[35]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[36]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[37]  Juanzhen Sun,et al.  Impacts of Initial Estimate and Observation Availability on Convective-Scale Data Assimilation with an Ensemble Kalman Filter , 2004 .

[38]  Timothy R. Marchant,et al.  The initial boundary problem for the Korteweg-de Vries equation on the negative quarter-plane , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  D. Zupanski A General Weak Constraint Applicable to Operational 4DVAR Data Assimilation Systems , 1997 .

[40]  Douglas A. Wolfe,et al.  Nonparametric Statistical Methods , 1973 .

[41]  P. Houtekamer,et al.  An Adaptive Ensemble Kalman Filter , 2000 .

[42]  Christian L. Keppenne,et al.  Data Assimilation into a Primitive-Equation Model with a Parallel Ensemble Kalman Filter , 2000 .

[43]  Peter M. Lyster,et al.  Assimilation of Stratospheric Chemical Tracer Observations Using a Kalman Filter. Part I: Formulation , 2000 .

[44]  Nancy Nichols,et al.  Treating Model Error in 3-D and 4-D Data Assimilation , 2003 .

[45]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .

[46]  Istvan Szunyogh,et al.  A Local Ensemble Kalman Filter for Atmospheric Data Assimilation , 2002 .

[47]  Masafumi Kamachi,et al.  Time-space weak-constraint data assimilation for nonlinear models , 2000 .

[48]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[49]  S. Cohn,et al.  Applications of Estimation Theory to Numerical Weather Prediction , 1981 .

[50]  T. Palmer,et al.  Stochastic representation of model uncertainties in the ECMWF ensemble prediction system , 2007 .

[51]  Dick Dee,et al.  Observability of discretized partial differential equations , 1988 .

[52]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[53]  Franco Molteni,et al.  Toward a dynamical understanding of planetary-scale flow regimes. , 1993 .

[54]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[55]  James W. Jones,et al.  ESTIMATING SOIL CARBON LEVELS USING AN ENSEMBLE KALMAN FILTER , 2004 .

[56]  Dusanka Zupanski,et al.  Four-Dimensional Variational Data Assimilation for the Blizzard of 2000 , 2002 .

[57]  Jeffrey P. Walker,et al.  Extended versus Ensemble Kalman Filtering for Land Data Assimilation , 2002 .

[58]  F. Molteni,et al.  The ECMWF Ensemble Prediction System: Methodology and validation , 1996 .

[59]  R. Daley The Effect of Serially Correlated Observation and Model Error on Atmospheric Data Assimilation , 1992 .

[60]  D. Dee On-line Estimation of Error Covariance Parameters for Atmospheric Data Assimilation , 1995 .

[61]  A. Bennett,et al.  Open Ocean Modeling as an Inverse Problem: Tidal Theory , 1982 .

[62]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[63]  Ionel Michael Navon,et al.  Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography , 1998 .

[64]  Dong‐Kyou Lee,et al.  An Application of a Weakly Constrained 4DVAR to Satellite Data Assimilation and Heavy Rainfall Simulation , 2003 .

[65]  Eugenia Kalnay,et al.  Ensemble Forecasting at NMC: The Generation of Perturbations , 1993 .

[66]  Y. Sasaki A Theory of Variational Assimilation with Kalman Filter-Type Constraints: Bias and Lagrange Multiplier , 2003 .

[67]  E. Kalnay,et al.  Ensemble Forecasting at NCEP and the Breeding Method , 1997 .

[68]  E.,et al.  4D Variational Data Analysis with Imperfect Model , 2000 .

[69]  D. Orrell,et al.  Model Error and Predictability over Different Timescales in the Lorenz '96 Systems , 2003 .

[70]  Nancy Nichols,et al.  Accounting for Model Error in Data Assimilation using Adjoint Methods , 1996 .

[71]  William S. Olson,et al.  Improving Global Analysis and Short-Range Forecast Using Rainfall and Moisture Observations Derived from TRMM and SSM/I Passive Microwave Sensors , 2001 .