The Steiner triple systems of order 19

Using an orderly algorithm, the Steiner triple systems of order 19 are classied; there are 11;084;874;829 pairwise nonisomorphic such designs. For each design, the order of its automorphism group and the number of Pasch congurations it contains are recorded; 2;591 of the designs are anti-Pasch. There are three main parts of the classication: constructing an initial set of blocks, the seeds; completing the seeds to triple systems with an algorithm for exact cover; and carrying out isomorph rejection of the nal triple systems. Isomorph rejection is based on the graph canonical labeling software nauty supplemented with a vertex invariant based on Pasch congurations. The possibility of using the (strongly regular) block graphs of these designs in the isomorphism tests is utilized. The aforementioned value is in fact a lower bound on the number of pairwise nonisomorphic strongly regular graphs with parameters (57; 24; 11; 9).

[1]  G. P. Erorychev Proof of the van der Waerden conjecture for permanents , 1981 .

[2]  Xavier L. Hubaut,et al.  Strongly regular graphs , 1975, Discret. Math..

[3]  Douglas R. Stinson,et al.  Some results on quadrilaterals in Steiner triple systems , 1992, Discret. Math..

[4]  H. Wilf On the Permanent of a Doubly Stochastic Matrix , 1966, Canadian Journal of Mathematics.

[5]  G. Egorychev The solution of van der Waerden's problem for permanents , 1981 .

[6]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[7]  Douglas R. Stinson,et al.  2000000 Steiner triple systems of order 19 , 1985 .

[8]  Richard M. Wilson,et al.  Nonisomorphic Steiner triple systems , 1974 .

[9]  Marshall Hall,et al.  Determination of Steiner triple systems of order 15 , 1955 .

[10]  John Patrick Murphy Steiner triple systems and cycle structure , 1999 .

[11]  R. C. Bose Strongly regular graphs, partial geometries and partially balanced designs. , 1963 .

[12]  Daniel A. Spielman,et al.  Faster isomorphism testing of strongly regular graphs , 1996, STOC '96.

[13]  Brendan D. McKay,et al.  Isomorph-Free Exhaustive Generation , 1998, J. Algorithms.

[14]  Gregory Butler,et al.  Fundamental Algorithms for Permutation Groups , 1991, Lecture Notes in Computer Science.

[15]  Louise D. Cummings,et al.  Complete classification of the triad systems on fifteen elements , 1919 .

[16]  Bruce Rothschild,et al.  Marshall Hall, Jr. , 1982 .

[17]  F N Cole,et al.  The Complete Enumeration of Triad Systems in 15 Elements. , 1917, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Peter J. Cameron,et al.  Strongly regular graphs , 2003 .

[19]  Charles J. Colbourn,et al.  Steiner triple systems of order 19 with nontrivial automorphism group , 1992 .

[20]  B. McKay nauty User ’ s Guide ( Version 2 . 4 ) , 1990 .

[21]  Donald E. Knuth,et al.  Dancing links , 2000, cs/0011047.

[22]  Mike J. Grannell,et al.  A small basis for four‐line configurations in steiner triple systems. Dedicated to the memory of gemma holly griggs , 1995 .

[23]  Douglas R. Stinson,et al.  284457 Steiner triple systems of order 19 contain a subsystem of order 9 , 1986 .

[24]  Brendan D. McKay autoson – a distributed batch system for UNIX workstation networks (version 1.3) , 1996 .