Development of Monte Carlo Modeling for Neutron-Induced Failures of Trench FieldStop IGBT

Based on experimental results under neutron beam and on analysis using Monte Carlo simulation, we show that the sensitivity to SEB/SEL of Trench Gate Fieldstop IGBT can be modeled by an RPP assumption. The minimum critical charge for triggering a destructive single event on a Trench Gate Fieldstop IGBT is found to be about 90 fC.

[1]  E. Normand,et al.  Neutron-induced single event burnout in high voltage electronics , 1997 .

[2]  Claudio H. Rivetta et al. Single Event Burnout in DC-DC Converters for the LHC Experiments , 2001 .

[3]  Frédéric Saigné,et al.  MC-ORACLE: A tool for predicting Soft Error Rate , 2011, Comput. Phys. Commun..

[4]  peixiong zhao,et al.  Monte Carlo Simulation of Single Event Effects , 2010, IEEE Transactions on Nuclear Science.

[5]  Antoine D. Touboul,et al.  On the reliability assessment of trench fieldstop IGBT under atmospheric neutron spectrum , 2012, Microelectron. Reliab..

[6]  C Poivey,et al.  Charge Collection in Power MOSFETs for SEB Characterisation—Evidence of Energy Effects , 2010, IEEE Transactions on Nuclear Science.

[7]  A. Hefner,et al.  The Effect of Neutrons on the Characteristics of the Insulated Gate Bipolar Transistor (IGBT) , 1986, IEEE Transactions on Nuclear Science.

[8]  H. Zeller Cosmic ray induced failures in high power semiconductor devices , 1995 .

[9]  Vinod Kumar Khanna,et al.  Insulated Gate Bipolar Transistor IGBT Theory and Design: Khanna/Insulated Gate Bipolar Transistor IGBT Theory and Design , 2003 .

[10]  M. Ishiko,et al.  Neutron induced single-event burnout of IGBT , 2010, The 2010 International Power Electronics Conference - ECCE ASIA -.

[11]  O. Jönsson,et al.  A NEW MONO-ENERGETIC NEUTRON BEAM FACILITY IN THE 20-180 MeV RANGE , 2004 .

[12]  N. Ikeda,et al.  Improved model for single-event burnout mechanism , 2004, IEEE Transactions on Nuclear Science.

[13]  Friedhelm Dr. Bauer,et al.  Accurate analytical modelling of cosmic ray induced failure rates of power semiconductor devices , 2009 .

[14]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[15]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[16]  Frank Pfirsch,et al.  Cosmic radiation as a cause for power device failure and possible countermeasures , 1994, Proceedings of the 6th International Symposium on Power Semiconductor Devices and Ics.

[17]  M. Pieck,et al.  Neutron-induced failure tests of 3300-V IGBTs for the Spallation Neutron Source accelerator , 2003, Proceedings of the 2003 Particle Accelerator Conference.

[18]  E. Normand,et al.  First observations of power MOSFET burnout with high energy neutrons , 1996 .

[19]  Vinod Kumar Khanna,et al.  The insulated gate bipolar transistor (IGBT) : theory and design , 2003 .

[20]  F. Wrobel,et al.  Parameterization of neutron-induced SER in bulk SRAMs from reverse Monte Carlo Simulations , 2005, IEEE Transactions on Nuclear Science.

[21]  Kimimori Hamada,et al.  Cosmic ray ruggedness of IGBTs for hybrid vehicles , 2010, 2010 22nd International Symposium on Power Semiconductor Devices & IC's (ISPSD).

[22]  R. Edwards,et al.  Determination of High Energy Neutron Voltage Stress Margins for High Voltage IGBT and Diode Pairs from Two Manufacturers using Energetic Particle Induced Charge Spectroscopy, EPICS , 2006, 2006 IEEE Radiation Effects Data Workshop.

[23]  E. Herr,et al.  Extrapolation of cosmic ray induced failures from test to field conditions for IGBT modules , 1998 .

[24]  C.D. Davidson,et al.  Failures of MOSFETs in terrestrial power electronics due to single event burnout , 2004, INTELEC 2004. 26th Annual International Telecommunications Energy Conference.

[25]  J. B. Langworthy,et al.  Depletion region geometry analysis applied to single event sensitivity , 1989 .