Unraveling the tectonic setting and crystallization history of the Equatorial Atlantic Magmatic Province

[1]  M. Schmitz,et al.  New U–Pb geochronology for the Central Atlantic Magmatic Province, critical reevaluation of high-precision ages and their impact on the end-Triassic extinction event , 2023, Scientific Reports.

[2]  A. F. Antunes,et al.  Intraplate records of a transform margin formation: Brittle deformation in the basement of the basins from the northeastern extremity of the Brazilian equatorial margin , 2023, Journal of South American Earth Sciences.

[3]  A. A. Macêdo Filho,et al.  Geochemical and geochronological signature of magma plumbing systems in the Parnaíba Basin and their correlations with Mesozoic large igneous provinces in NE South America , 2023, Lithos.

[4]  M. L. Assine,et al.  Transtensional tectonics during the Gondwana breakup in northeastern Brazil: Early Cretaceous paleostress inversion in the Araripe Basin , 2023, Tectonophysics.

[5]  H. Fossen,et al.  Rheology, shear zone width, microstructural evolution and tectonics of a zippered strike-slip shear zone: The Senador Pompeu shear zone, northern Borborema Province, Brazil , 2022, Journal of Structural Geology.

[6]  S. Fraser,et al.  Correlations among large igneous provinces related to the West Gondwana breakup: A geochemical database reappraisal of Early Cretaceous plumbing systems , 2022, Geoscience Frontiers.

[7]  Z. Souza,et al.  Stress states during the emplacement of the eastern Rio Ceará-Mirim Dike Swarm, Borborema Province, northeastern Brazil , 2022, Journal of the Geological Survey of Brazil.

[8]  H. Fossen,et al.  The Patos-Pernambuco shear system of NE Brazil: Partitioned intracontinental transcurrent deformation revealed by enhanced aeromagnetic data , 2022, Journal of Structural Geology.

[9]  A. Vauchez,et al.  The Borborema Strike-Slip Shear Zone System (NE Brazil): Large-Scale Intracontinental Strain Localization in a Heterogeneous Plate , 2021, Lithosphere.

[10]  S. Fraser,et al.  Using self-organizing maps in airborne geophysical data for mapping mafic dyke swarms in NE Brazil , 2021 .

[11]  L. M. Lino,et al.  Textural and Geochemical Evidence for Multiple, Sheet-like Magma Pulses in the Limeira Intrusion, Paraná Magmatic Province, Brazil , 2021 .

[12]  A. A. Macêdo Filho,et al.  PETROGENESIS OF MESOZOIC GIANT DIKE SWARMS AND GEODYNAMICAL INSIGHTS ABOUT GOUGH EMI-TYPE FLAVORS IN THE EQUATORIAL ATLANTIC MAGMATIC PROVINCE , 2021, SSRN Electronic Journal.

[13]  W. Teixeira,et al.  Updated map of the mafic dike swarms of Brazil based on airborne geophysical data , 2020 .

[14]  P. Vasconcelos,et al.  Structural controls and 40Ar/39Ar geochronological data of basic dike swarms in the eastern domain of the Parnaíba Basin, northeast Brazil , 2020 .

[15]  U. Schaltegger,et al.  Rapid eruption of silicic magmas from the Paraná magmatic province (Brazil) did not trigger the Valanginian event , 2020, Geology.

[16]  A. Masoud Geometry and field relations disclose the emplacement dynamics of the SW Sinai Dyke Swarms (Egypt) , 2020 .

[17]  L. Borghi,et al.  Petrogenesis of the Low-TiO2 Batalha Suite in the eastern Parnaíba basin, northeastern Brazil , 2020, International Journal of Earth Sciences.

[18]  C. Almeida,et al.  Petrogenesis of continental flood basalts in eastern Parnaiba basin, Brazil: A singular sill occurrence with low- and high-TiO2 tholeiites , 2019, Journal of South American Earth Sciences.

[19]  M. Hollanda,et al.  Mineral chemistry and crystal size distributions of mafic dikes and sills on the eastern border of the Parnaíba Basin, NE Brazil , 2019, Journal of Volcanology and Geothermal Research.

[20]  V. Sacek,et al.  Numerical Modeling of Weathering, Erosion, Sedimentation, and Uplift in a Triple Junction Divergent Margin , 2019, Geochemistry, Geophysics, Geosystems.

[21]  H. Fossen,et al.  The Mesozoic Equatorial Atlantic Magmatic Province (EQUAMP) , 2018, Springer Geology.

[22]  M. Heilbron,et al.  Geochemical and temporal provinciality of the magmatism of the eastern Parnaíba Basin, NE Brazil , 2018, Special Publications.

[23]  I. Trosdtorf,et al.  Phanerozoic magmatism in the Parnaíba Basin: characterization of igneous bodies (well logs and 2D seismic sections), geometry, distribution and sill emplacement patterns , 2018, Special Publications.

[24]  M. Hollanda,et al.  Geostatistical Interplay Between Geophysical and Geochemical Data: Mapping Litho-Structural Assemblages of Mesozoic Igneous Activities in the Parnaíba Basin (NE Brazil) , 2018, Surveys in Geophysics.

[25]  M. Pimentel,et al.  Petrology of Jurassic and Cretaceous basaltic formations from the Parnaíba Basin, NE Brazil: correlations and associations with large igneous provinces , 2018, Special Publications.

[26]  E. F. J. D. Sá,et al.  Controle estrutural da borda sudeste da Bacia do Parnaíba, Nordeste do Brasil: relação com eventos geodinâmicos no Gondwana , 2017 .

[27]  D. C. Oliveira,et al.  Cartografia geofísica regional do magmatismo mesozoico na Bacia do Parnaíba , 2017 .

[28]  N. Youbi,et al.  End-Triassic mass extinction started by intrusive CAMP activity , 2017, Nature Communications.

[29]  V. Yarushina,et al.  Dyke emplacement and crustal structure within a continental large igneous province, northern Barents Sea , 2017, Special Publications.

[30]  A. D. Silva,et al.  Petrogênese de diabásios toleíticos na porção oriental da Bacia do Parnaíba: evidências para heterogeneidade no manto litosférico subcontinental no NE do Brasil , 2017 .

[31]  D. Boutelier,et al.  Controls on sill and dyke-sill hybrid geometry and propagation in the crust: The role of fracture toughness , 2017 .

[32]  G. Bertotti,et al.  Rift fault geometry and evolution in the Cretaceous Potiguar Basin (NE Brazil) based on fault growth models , 2016 .

[33]  Z. S. Souza,et al.  Geoquímica do magmatismo Ediacarano Serra do Caramuru, NE da Província Borborema, RN, Brasil , 2016 .

[34]  P. Vasconcelos,et al.  Petrology of continental tholeiitic magmas forming a 350-km-long Mesozoic dyke swarm in NE Brazil: constraints of geochemical and isotopic data , 2016 .

[35]  C. Jackson,et al.  Lateral Magma Flow in Mafic Sill‐complexes , 2016 .

[36]  J. Dyment,et al.  The Cretaceous opening of the South Atlantic Ocean , 2015 .

[37]  R. Angélica,et al.  Mafic dykes intrusive into Pre-Cambrian rocks of the São Luís cratonic fragment and Gurupi Belt (Parnaíba Province), north–northeastern Brazil: Geochemistry, Sr–Nd–Pb–O isotopes, 40Ar/39Ar geochronology, and relationships to CAMP magmatism , 2013 .

[38]  Renato M. Darros De Matos,et al.  Tectonic evolution of the Equatorial South Atlantic , 2013 .

[39]  Â. Min,et al.  The Central Atlantic Magmatic Province (CAMP) in Brazil: Petrology, geochemistry, 40Ar/39Ar ages, paleomagnetism and geodynamic implications , 2013 .

[40]  Â. Min,et al.  Paleomagnetic and Geochemical Constraints on the Timing and Duration of the CAMP Activity in Northeastern Brazil , 2013 .

[41]  R. Ernst,et al.  Giant radiating dyke swarms: Their use in identifying pre-Mesozoic large igneous provinces and mantle plumes , 2013 .

[42]  Agust Gudmundsson Magma chambers: Formation, local stresses, excess pressures, and compartments , 2012 .

[43]  J. Rowland,et al.  Interconnected sills and inclined sheet intrusions control shallow magma transport in the Ferrar large igneous province, Antarctica , 2012 .

[44]  Agust Gudmundsson Deflection of dykes into sills at discontinuities and magma-chamber formation , 2011 .

[45]  C. Vérati,et al.  40Ar/39Ar ages and Sr–Nd–Pb–Os geochemistry of CAMP tholeiites from Western Maranhão basin (NE Brazil) , 2011 .

[46]  C. Morley Stress re-orientation along zones of weak fabrics in rifts: An explanation for pure extension in ‘oblique’ rift segments? , 2010 .

[47]  Richard A. Schultz,et al.  Emplacement conditions of igneous dikes in Ethiopian Traps , 2008 .

[48]  M. Toplis,et al.  Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid , 2008 .

[49]  R. G. Resmini,et al.  Modeling of crystal size distributions (CSDs) in sills , 2007 .

[50]  Michael Denis Higgins,et al.  Verification of ideal semi-logarithmic, lognormal or fractal crystal size distributions from 2D datasets , 2006 .

[51]  Dougal A. Jerram,et al.  On estimating crystal shape for crystal size distribution analysis , 2006 .

[52]  M. Pimentel,et al.  Lithosphere–asthenosphere interaction and the origin of Cretaceous tholeiitic magmatism in Northeastern Brazil: Sr–Nd–Pb isotopic evidence , 2006 .

[53]  P. Launeau Evidence of magmatic flow by 2-D image analysis of 3-D shape preferred orientation distributions , 2004 .

[54]  P. Launeau,et al.  Fabric of the Rio Ceará-Mirim mafic dike swarm (northeastern Brazil) determined by anisotropy of magnetic susceptibility and image analysis , 2002 .

[55]  P. Szatmari,et al.  Single-crystal 40Ar-39Ar dating of pyrite: No fool's clock , 2001 .

[56]  R. Trindade,et al.  Magnetic fabric of a basaltic dyke swarm associated with Mesozoic rifting in northeastern Brazil , 2000 .

[57]  V. Morra,et al.  Geochronology and petrology of Cretaceous basaltic magmatism in the Kwanza basin (western Angola), and relationships with the Paranà-Etendeka continental flood basalt province , 1999 .

[58]  Michael Denis Higgins Origin of Anorthosite by Textural Coarsening: Quantitative Measurements of a Natural Sequence of Textural Development , 1998 .

[59]  A. Baksi,et al.  Mesozoic igneous activity in the Maranha˜o province, northern Brazil: 40Ar/ 39Ar evidence for separate episodes of basaltic magmatism , 1997 .

[60]  Michael Denis Higgins Magma dynamics beneath Kameni volcano, Thera, Greece, as revealed by crystal size and shape measurements , 1996 .

[61]  B. Marsh,et al.  Steady-state volcanism, paleoeffusion rates, and magma system volume inferred from plagioclase crystal size distributions in mafic lavas: Dome Mountain, Nevada , 1995 .

[62]  C. Coulon,et al.  40Ar/39Ar chronology, petrology and geodynamic setting of Mesozoic to early Cenozoic magmatism from the Benue Trough, Nigeria , 1995, Journal of the Geological Society.

[63]  P. Szatmari,et al.  Faulting in the Early Cretaceous Rio do Peixe basin (NE Brazil) and its significance for the opening of the Atlantic , 1994 .

[64]  C. Hawkesworth,et al.  Chemical stratigraphy of the Paraná lavas (South America): classification of magma types and their spatial distribution , 1992 .

[65]  R. D. D. Matos The Northeast Brazilian Rift System , 1992 .

[66]  Â. Min,et al.  Evidence of magmatic activity related to Middle Jurassic and Lower Cretaceous rifting from northeastern Brazil (Ceará-Mirim): K/Ar age, palaeomagnetism, petrology and Sr/1bNd isotope characteristics☆ , 1992 .

[67]  Peter W Voorhees,et al.  Ostwald Ripening of Two-Phase Mixtures , 1992 .

[68]  M. Ernesto,et al.  Paleomagnetism of the Ceará-Mirim dyke swarm, northeastern Brazil , 1991 .

[69]  M. Popoff,et al.  Early Cretaceous extension in northeast Brazil related to the South Atlantic opening , 1991 .

[70]  E. McKee,et al.  Petrology, isotope characteristics, and K-Ar ages of the Maranhão, northern Brazil, Mesozoic basalt province , 1990 .

[71]  L. Civetta,et al.  Low and high TiO2 Mesozoic tholeiitic magmatism of the Maranhao Basin (NE Brazil): K/Ar age, geochemistry, petrology, isotope characteristics and relationships with Mesozoic low and high TiO2 flood basalts of the Paranà Basin (SE Brazil) , 1990 .

[72]  Bruce D. Marsh,et al.  Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization , 1988 .

[73]  P. Szatmari,et al.  MECANISMO DE RIFTEAMENTO DA PORÇÃO OCIDENTAL DA MARGEM NORTE BRASILEIRA, BACIA DO PARÁ-MARANHÃO , 1987 .

[74]  A. Philpotts Compositions of immiscible liquids in volcanic rocks , 1982 .

[75]  A. Miyashiro Nature of alkalic volcanic rock series , 1978 .

[76]  A. Sial THE POST-PALEOZOIC VOLCANISM OF NORTHEAST BRAZIL AND ITS TECTONIC SIGNIFICANCE , 1976 .