Optimal static range reporting in one dimension

We consider static one dimensional range searching problems. These problems are to build static data structures for an integer set <italic>S</italic> \subseteq <italic>U</italic>, where <italic>U</italic> = \{0,1,\dots,2^<italic>w</italic>-1\}, which support various queries for integer intervals of <italic>U</italic>. For the query of reporting all integers in <italic>S</italic> contained within a query interval, we present an optimal data structure with linear space cost and with query time linear in the number of integers reported. This result holds in the unit cost RAM model with word size <italic>w</italic> and a standard instruction set. We also present a linear space data structure for approximate range counting. A range counting query for an interval returns the number of integers in <italic>S</italic> contained within the interval. For any constant ε>0, our range counting data structure returns in constant time an approximate answer which is within a factor of at most 1+ε of the correct answer.

[1]  Kurt Mehlhorn,et al.  Multi-dimensional searching and computational geometry , 1984 .

[2]  TarjanRobert Endre,et al.  Fast algorithms for finding nearest common ancestors , 1984 .

[3]  Prof. Dr. Kurt Mehlhorn,et al.  Data Structures and Algorithms 3 , 2012, EATCS Monographs on Theoretical Computer Science.

[4]  Jeanette P. Schmidt,et al.  The Spatial Complexity of Oblivious k-Probe Hash Functions , 2018, SIAM J. Comput..

[5]  Kenneth L. Clarkson,et al.  An algorithm for approximate closest-point queries , 1994, SCG '94.

[6]  Mikkel Thorup,et al.  Faster deterministic sorting and priority queues in linear space , 1998, SODA '98.

[7]  Ola Petersson,et al.  Approximate Indexed Lists , 1998, J. Algorithms.

[8]  Peter van Emde Boas,et al.  Two Results on Tables , 1986, Inf. Process. Lett..

[9]  Michael L. Fredman,et al.  Surpassing the Information Theoretic Bound with Fusion Trees , 1993, J. Comput. Syst. Sci..

[10]  Rajeev Raman,et al.  Sorting in linear time? , 1995, STOC '95.

[11]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[12]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[13]  Peter Bro Miltersen,et al.  On data structures and asymmetric communication complexity , 1994, STOC '95.

[14]  Jeffrey Scott Vitter,et al.  Approximate data structures with applications , 1994, SODA '94.

[15]  Miklós Ajtai,et al.  A lower bound for finding predecessors in Yao's cell probe model , 1988, Comb..

[16]  Rajeev Raman,et al.  Sorting in Linear Time? , 1998, J. Comput. Syst. Sci..

[17]  Faith Ellen,et al.  Optimal bounds for the predecessor problem , 1999, STOC '99.

[18]  Martin Dietzfelbinger,et al.  Universal Hashing and k-Wise Independent Random Variables via Integer Arithmetic without Primes , 1996, STACS.

[19]  Michael L. Fredman,et al.  Trans-Dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths , 1994, J. Comput. Syst. Sci..

[20]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[21]  Alok Aggarwal,et al.  The input/output complexity of sorting and related problems , 1988, CACM.

[22]  Franco P. Preparata,et al.  Computational Geometry , 1985, Texts and Monographs in Computer Science.

[23]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[24]  Cecilia R. Aragon,et al.  Randomized search trees , 1989, 30th Annual Symposium on Foundations of Computer Science.

[25]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry , 2012, EATCS Monographs on Theoretical Computer Science.

[26]  E WillardDan,et al.  Surpassing the information theoretic bound with fusion trees , 1993 .

[27]  Hanan Samet,et al.  Efficient regular data structures and algorithms for location and proximity problems , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[28]  Dan E. Willard,et al.  Log-logarithmic worst-case range queries are possible in space ⊕(N) , 1983 .

[29]  Mikkel Thorup,et al.  Tight(er) worst-case bounds on dynamic searching and priority queues , 2000, STOC '00.