A Multiphase Image Segmentation Based on Fuzzy Membership Functions and L1-Norm Fidelity

In this paper, we propose a variational multiphase image segmentation model based on fuzzy membership functions and L1-norm fidelity. Then we apply the alternating direction method of multipliers to solve an equivalent problem. All the subproblems can be solved efficiently. Specifically, we propose a fast method to calculate the fuzzy median. Experimental results and comparisons show that the L1-norm based method is more robust to outliers such as impulse noise and keeps better contrast than its L2-norm counterpart. Theoretically, we prove the existence of the minimizer and analyze the convergence of the algorithm.

[1]  Xavier Bresson,et al.  Fast texture segmentation model based on the shape operator and active contour , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Gabriele Steidl,et al.  A new fuzzy c-means method with total variation regularization for segmentation of images with noisy and incomplete data , 2012, Pattern Recognit..

[3]  Myungjoo Kang,et al.  Variational Image Segmentation Models Involving Non-smooth Data-Fidelity Terms , 2014, J. Sci. Comput..

[4]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[5]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[6]  Xiaohao Cai,et al.  Variational image segmentation model coupled with image restoration achievements , 2014, Pattern Recognit..

[7]  Xue-Cheng Tai,et al.  A binary level set model and some applications to Mumford-Shah image segmentation , 2006, IEEE Transactions on Image Processing.

[8]  Xavier Bresson,et al.  Fast Global Minimization of the Active Contour/Snake Model , 2007, Journal of Mathematical Imaging and Vision.

[9]  Yunmei Chen,et al.  Projection Onto A Simplex , 2011, 1101.6081.

[10]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[11]  Xiaoyi Jiang,et al.  A Variational Framework for Region-Based Segmentation Incorporating Physical Noise Models , 2013, Journal of Mathematical Imaging and Vision.

[12]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[13]  Yin Zhang,et al.  An alternating direction algorithm for matrix completion with nonnegative factors , 2011, Frontiers of Mathematics in China.

[14]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[15]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[16]  Michael K. Ng,et al.  A Multiphase Image Segmentation Method Based on Fuzzy Region Competition , 2010, SIAM J. Imaging Sci..

[17]  Sibel Tari,et al.  Automatic Prior Shape Selection for Image Segmentation , 2015 .

[18]  Jianhong Shen,et al.  A Stochastic-Variational Model for Soft Mumford-Shah Segmentation , 2005, Int. J. Biomed. Imaging.

[19]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[20]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[21]  Dzung L. Pham,et al.  Fuzzy clustering with spatial constraints , 2002, Proceedings. International Conference on Image Processing.

[22]  J. Lie,et al.  A PIECEWISE CONSTANT LEVEL SET FRAMEWORK , 2005 .

[23]  Yoon Mo Jung,et al.  Multiphase Image Segmentation via Modica-Mortola Phase Transition , 2007, SIAM J. Appl. Math..

[24]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[25]  Ron Kimmel,et al.  Multi-Region Active Contours with a Single Level Set Function , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Raymond H. Chan,et al.  A Two-Stage Image Segmentation Method for Blurry Images with Poisson or Multiplicative Gamma Noise , 2014, SIAM J. Imaging Sci..

[27]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[29]  Andreas Weinmann,et al.  Fast Partitioning of Vector-Valued Images , 2014, SIAM J. Imaging Sci..

[30]  Daoqiang Zhang,et al.  Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[31]  Paul R. Kersten,et al.  Fuzzy order statistics and their application to fuzzy clustering , 1999, IEEE Trans. Fuzzy Syst..

[32]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[33]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[34]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[35]  L. Vese,et al.  General convergent expectation maximization (EM)-type algorithms for image reconstruction , 2013 .

[36]  Michael K. Ng,et al.  A Fast l1-TV Algorithm for Image Restoration , 2009, SIAM J. Sci. Comput..

[37]  Raymond H. Chan,et al.  Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization , 2005, IEEE Transactions on Image Processing.

[38]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[39]  Benoit Mory,et al.  Fuzzy Region Competition: A Convex Two-Phase Segmentation Framework , 2007, SSVM.

[40]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[41]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[42]  Aly A. Farag,et al.  A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data , 2002, IEEE Transactions on Medical Imaging.

[43]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[44]  Chunming Li,et al.  Multiphase Soft Segmentation with Total Variation and H1 Regularization , 2010, Journal of Mathematical Imaging and Vision.

[45]  Daniel Cremers,et al.  A Convex Approach to Minimal Partitions , 2012, SIAM J. Imaging Sci..

[46]  Stelios Krinidis,et al.  A Robust Fuzzy Local Information C-Means Clustering Algorithm , 2010, IEEE Transactions on Image Processing.

[47]  Ming Yan,et al.  Restoration of Images Corrupted by Impulse Noise and Mixed Gaussian Impulse Noise using Blind Inpainting , 2013, SIAM J. Imaging Sci..

[48]  Gjlles Aubert,et al.  Mathematical problems in image processing , 2001 .

[49]  L O Hall,et al.  Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.

[50]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .