Everlasting Multi-party Computation

A protocol has everlasting security if it is secure against adversaries that are computationally unlimited after the protocol execution. This models the fact that we cannot predict which cryptographic schemes will be broken, say, several decades after the protocol execution. In classical cryptography, everlasting security is difficult to achieve: even using trusted setup like common reference strings or signature cards, many tasks such as secure communication and oblivious transfer cannot be achieved with everlasting security. An analogous result in the quantum setting excludes protocols based on common reference strings, but not protocols using a signature card. We define a variant of the Universal Composability framework, everlasting quantum-UC, and show that in this model, we can implement secure communication and general multi-party computation using signature cards as trusted setup.

[1]  Louis Salvail,et al.  Computational Collapse of Quantum State with Application to Oblivious Transfer , 2003, TCC.

[2]  Debbie W. Leung,et al.  The Universal Composable Security of Quantum Key Distribution , 2004, TCC.

[3]  Ueli Maurer Conditionally-perfect secrecy and a provably-secure randomized cipher , 2004, Journal of Cryptology.

[4]  Dominic Mayers Unconditionally secure quantum bit commitment is impossible , 1997 .

[5]  Oded Goldreich,et al.  Foundations of Cryptography: List of Figures , 2001 .

[6]  Jan Bouda,et al.  SECOQC White Paper on Quantum Key Distribution and Cryptography , 2007, ArXiv.

[7]  Vincent Rijmen,et al.  ECRYPT yearly report on algorithms and keysizes , 2009 .

[8]  Ran Canetti,et al.  Universally Composable Commitments , 2001, CRYPTO.

[9]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[10]  Joe Kilian,et al.  Achieving oblivious transfer using weakened security assumptions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[11]  Rudolf Ahlswede,et al.  Founding Cryptography on Oblivious Transfer , 2016 .

[12]  Dominique Unruh Protokollkomposition und Komplexität , 2006, Ausgezeichnete Informatikdissertationen.

[13]  Jörn Müller-Quade,et al.  Long-Term Security and Universal Composability , 2007, Journal of Cryptology.

[14]  Dennis Hofheinz,et al.  Simulatable security and polynomially bounded concurrent composability , 2006, 2006 IEEE Symposium on Security and Privacy (S&P'06).

[15]  Ivan Damgård,et al.  Perfect Hiding and Perfect Binding Universally Composable Commitment Schemes with Constant Expansion Factor , 2001, CRYPTO.

[16]  Dominique Unruh,et al.  Quantum Proofs of Knowledge , 2012, IACR Cryptol. ePrint Arch..

[17]  Ivan Damgård,et al.  Improving the Security of Quantum Protocols via Commit-and-Open , 2009, CRYPTO.

[18]  John Watrous Zero-Knowledge against Quantum Attacks , 2009, SIAM J. Comput..

[19]  Dominique Unruh,et al.  Concurrent Composition in the Bounded Quantum Storage Model , 2011, EUROCRYPT.

[20]  Ran Canetti,et al.  Universally Composable Security with Global Setup , 2007, TCC.

[21]  I. Damgård,et al.  Cryptography in the Bounded Quantum Storage Model , 2005 .

[22]  Dominique Unruh,et al.  Universally Composable Quantum Multi-party Computation , 2009, EUROCRYPT.

[23]  Jürg Wullschleger Oblivious-transfer amplification , 2007, Ausgezeichnete Informatikdissertationen.

[24]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[25]  Jörn Müller-Quade,et al.  On the Security and Composability of the One Time Pad , 2005, SOFSEM.

[26]  Dennis Hofheinz,et al.  Comparing Two Notions of Simulatability , 2005, TCC.

[27]  Joe Kilian,et al.  Founding crytpography on oblivious transfer , 1988, STOC '88.

[28]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[29]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[30]  Dominique Unruh Everlasting Multi-party Computation , 2013, CRYPTO.

[31]  Oded Goldreich,et al.  Foundations of Cryptography: Basic Tools , 2000 .

[32]  Moni Naor,et al.  On Everlasting Security in the Hybrid Bounded Storage Model , 2006, ICALP.

[33]  Joe Kilian,et al.  Achieving Oblivious Transfer Using Weakened Security Assumptions (Extended Abstract) , 1988, FOCS 1988.

[34]  Gilles Brassard,et al.  Practical Quantum Oblivious Transfer , 1991, CRYPTO.

[35]  Dennis Hofheinz,et al.  Simulatable Security and Polynomially Bounded Concurrent Composition , 2006, IACR Cryptol. ePrint Arch..

[36]  Jörn Müller-Quade,et al.  Universally composable zero-knowledge arguments and commitments from signature cards , 2007 .

[37]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2009, JACM.

[38]  Yuval Ishai,et al.  Founding Cryptography on Oblivious Transfer - Efficiently , 2008, CRYPTO.

[39]  Robert König,et al.  Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.

[40]  Oded Goldreich Foundations of Cryptography: Index , 2001 .