Herbrand-Confluence for Cut Elimination in Classical First Order Logic

We consider cut-elimination in the sequent calculus for classical first-order logic. It is well known that this system, in its most general form, is neither confluent nor strongly normalizing. In this work we take a coarser (and mathematically more realistic) look at cut-free proofs. We analyze which witnesses they choose for which quantifiers, or in other words: we only consider the Herbrand-disjunction of a cut-free proof. Our main theorem is a confluence result for a natural class of proofs: all (possibly infinitely many) normal forms of the non-erasing reduction lead to the same Herbrand-disjunction.

[1]  Harold T. Hodes,et al.  The | lambda-Calculus. , 1988 .

[2]  Alexander Leitsch,et al.  Technical Report : Towards Algorithmic Cut-Introduction , 2012 .

[3]  Alexander Leitsch,et al.  CERES: An analysis of Fürstenberg's proof of the infinity of primes , 2008, Theoretical Computer Science.

[4]  Hubert Comon,et al.  Tree automata techniques and applications , 1997 .

[5]  Christian Urban Classical Logic and Computation , 2000 .

[6]  Helmut Schwichtenberg,et al.  Refined program extraction form classical proofs , 2002, Ann. Pure Appl. Log..

[7]  J. Avigad The computational content of classical arithmetic , 2009, 0901.2551.

[8]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[9]  Stefan Hetzl,et al.  Applying Tree Languages in Proof Theory , 2012, LATA.

[10]  Geuvers Herman,et al.  Classical Logic and Computation , 2012 .

[11]  Jean Gallier,et al.  Constructive Logics Part I: A Tutorial on Proof Systems and Typed gamma-Calculi , 1993, Theor. Comput. Sci..

[12]  Trifon Trifonov,et al.  Exploring the Computational Content of the Infinite Pigeonhole Principle , 2012, J. Log. Comput..

[13]  J. Zucker The correspondence between cut-elimination and normalization II , 1974 .

[14]  Stefan Hetzl,et al.  The Computational Content of Arithmetical Proofs , 2012, Notre Dame J. Formal Log..

[15]  Matthias Baaz,et al.  On the non-confluence of cut-elimination , 2011, The Journal of Symbolic Logic.

[16]  Alexander Leitsch,et al.  Cut-Elimination: Experiments with CERES , 2005, LPAR.

[17]  Vincent Danos,et al.  A new deconstructive logic: linear logic , 1997, Journal of Symbolic Logic.

[18]  Alexander Leitsch,et al.  Cut-elimination and Redundancy-elimination by Resolution , 2000, J. Symb. Comput..

[19]  Ulrich Kohlenbach,et al.  Applied Proof Theory - Proof Interpretations and their Use in Mathematics , 2008, Springer Monographs in Mathematics.

[20]  Stefano Berardi,et al.  A Symmetric Lambda Calculus for Classical Program Extraction , 1994, Inf. Comput..

[21]  Florent Jacquemard,et al.  Rigid tree automata and applications , 2011, Inf. Comput..

[22]  Florent Jacquemard,et al.  Rigid Tree Automata , 2009, LATA.

[23]  Alexander Leitsch,et al.  Towards Algorithmic Cut-Introduction , 2012, LPAR.

[24]  Ferenc Gécseg,et al.  Tree Languages , 1997, Handbook of Formal Languages.

[25]  Christian Urban,et al.  Strong Normalisation of Cut-Elimination in Classical Logic , 1999, Fundam. Informaticae.

[26]  Willem Heijltjes,et al.  Classical proof forestry , 2010, Ann. Pure Appl. Log..

[27]  Dale A. Miller,et al.  A compact representation of proofs , 1987, Stud Logica.

[28]  Stefan Hetzl,et al.  On the form of witness terms , 2010, Arch. Math. Log..

[29]  Richard McKinley,et al.  Herbrand expansion proofs and proof identity , 2008 .

[30]  Hugo Herbelin,et al.  The duality of computation , 2000, ICFP '00.