Implementation and characterization of BinaryWeave: A new search pipeline for continuous gravitational waves from Scorpius X-1

Scorpius X-1 (Sco X-1) has long been considered one of the most promising targets for detecting continuous gravitational waves with ground-based detectors. Observational searches for Sco X-1 have achieved substantial sensitivity improvements in recent years, to the point of starting to rule out emission at the torque-balance limit in the low-frequency range ∼ 40 − 180 Hz. In order to further enhance the detection probability, however, there is still much ground to cover for the full range of plausible signal frequencies ∼ 20 − 1500 Hz, as well as a wider range of uncertainties in binary orbital parameters. Motivated by this challenge, we have developed BinaryWeave , a new search pipeline for continuous waves from a neutron star in a known binary system such as Sco X-1. This pipeline employs a semi-coherent StackSlide F -statistic using efficient lattice-based metric template banks, which can cover wide ranges in frequency and unknown orbital parameters. We present a detailed timing model and extensive injection-and-recovery simulations that illustrate that the pipeline can achieve high detection sensitivities over a significant portion of the parameter space when assuming sufficiently large (but realistic) computing budgets. Our studies further underline the need for stricter constraints on the Sco X-1 orbital parameters from electromagnetic observations, in order to be able to push sensitivity below the torque-balance limit over the entire range of possible source parameters.

[1]  P. Vreeswijk,et al.  SXP 15.6 - an accreting pulsar close to spin equilibrium? , 2022, Monthly Notices of the Royal Astronomical Society.

[2]  K. Wette,et al.  Template lattices for a cross-correlation search for gravitational waves from Scorpius X-1 , 2021, Classical and Quantum Gravity.

[3]  A. Melatos,et al.  Graphics processing unit implementation of the F -statistic for continuous gravitational wave searches , 2021, Classical and Quantum Gravity.

[4]  M. J. Williams,et al.  GWTC-2.1: Deep extended catalog of compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run , 2021, Physical Review D.

[5]  A. Melatos,et al.  Hidden Markov model tracking of continuous gravitational waves from a binary neutron star with wandering spin. III. Rotational phase tracking , 2021, Physical Review D.

[6]  C. Messenger,et al.  Deep searches for X-ray pulsations from Scorpius X-1 and Cygnus X-2 in support of continuous gravitational wave searches , 2021, 2105.13803.

[7]  N. Andersson,et al.  Modelling neutron star mountains in relativity , 2021, Monthly Notices of the Royal Astronomical Society.

[8]  A. Melatos,et al.  Deep exploration for continuous gravitational waves at 171–172 Hz in LIGO second observing run data , 2021, Physical Review D.

[9]  Andrey A. Shoom,et al.  Template banks based on Zn and An* lattices , 2021, Physical Review D.

[10]  Bruce Allen,et al.  Optimal template banks , 2021, Physical Review D.

[11]  B. Owen,et al.  First searches for gravitational waves from r -modes of the Crab pulsar , 2021, Physical Review D.

[12]  B. Krishnan,et al.  Search for Continuous Gravitational Waves from Scorpius X-1 in LIGO O2 Data , 2020, Astrophysical Journal.

[13]  M. S. Shahriar,et al.  Search for gravitational waves from Scorpius X-1 in the second Advanced LIGO observing run with an improved hidden Markov model , 2019, Physical Review D.

[14]  B. Allen Spherical ansatz for parameter-space metrics , 2019, Physical Review D.

[15]  Sinead Walsh,et al.  Optimizing the choice of analysis method for all-sky searches for continuous gravitational waves with Einstein@Home , 2019, Physical Review D.

[16]  K. Wette,et al.  Fast and accurate sensitivity estimation for continuous-gravitational-wave searches , 2018, Physical Review D.

[17]  Matthew Pitkin,et al.  OctApps: a library of Octave functions for continuous gravitational-wave data analysis , 2018, J. Open Source Softw..

[18]  D. Steeghs,et al.  Precision Ephemerides for Gravitational-wave Searches – III. Revised system parameters of Sco X-1 , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  R. Prix,et al.  Implementing a semicoherent search for continuous gravitational waves using optimally constructed template banks , 2018, Physical Review D.

[20]  B. Krishnan,et al.  Resampling to accelerate cross-correlation searches for continuous gravitational waves from binary systems , 2017, 1712.06515.

[21]  A. Mukherjee,et al.  Accretion-induced spin-wandering effects on the neutron star in Scorpius X-1: Implications for continuous gravitational wave searches , 2017, 1710.06185.

[22]  K. Riles,et al.  Recent searches for continuous gravitational waves , 2017, 1712.05897.

[23]  Y. Wang,et al.  Upper Limits on Gravitational Waves from Scorpius X-1 from a Model-based Cross-correlation Search in Advanced LIGO Data , 2017, 1706.03119.

[24]  G. Meadors,et al.  Searches for continuous gravitational waves from Scorpius X-1 and XTE J1751-305 in LIGO's sixth science run , 2016, 1610.09391.

[25]  Sylvia J. Zhu,et al.  Results of an all-sky high-frequency Einstein@Home search for continuous gravitational waves in LIGO's fifth science run , 2016, 1607.00745.

[26]  S. Suvorova,et al.  Hidden Markov model tracking of continuous gravitational waves from a neutron star with wandering spin , 2016, 1606.02412.

[27]  J. Whelan,et al.  Model-Based Cross-Correlation Search for Gravitational Waves from Scorpius X-1 , 2015, 1504.05890.

[28]  P. D. Lasky,et al.  Gravitational waves from Scorpius X-1: a comparison of search methods and prospects for detection with advanced detectors , 2015, 1504.05889.

[29]  P. Leaci,et al.  Directed searches for continuous gravitational waves from binary systems: Parameter-space metrics and optimal Scorpius X-1 sensitivity , 2015, 1502.00914.

[30]  R. Serafinelli,et al.  Directed search for gravitational waves from Scorpius X-1 with initial LIGO data , 2014, 1412.0605.

[31]  K. Wette Lattice template placement for coherent all-sky searches for gravitational-wave pulsars , 2014, 1410.6882.

[32]  U. L. Laguna,et al.  PRECISION EPHEMERIDES FOR GRAVITATIONAL-WAVE SEARCHES. I. Sco X-1 , 2013, 1311.6246.

[33]  K. Wette,et al.  Flat parameter-space metric for all-sky searches for gravitational-wave pulsars , 2013, 1310.5587.

[34]  B. Owen,et al.  Maximum elastic deformations of relativistic stars , 2012, 1208.5227.

[35]  M. Shaltev,et al.  Search for Continuous Gravitational Waves: Optimal StackSlide method at fixed computing cost , 2012, 1201.4321.

[36]  K. Wette Estimating the sensitivity of wide-parameter-space searches for gravitational-wave pulsars , 2011, 1111.5650.

[37]  C. Messenger Semicoherent search strategy for known continuous wave sources in binary systems , 2011, 1109.0501.

[38]  A. Patruno,et al.  SPIN EQUILIBRIUM WITH OR WITHOUT GRAVITATIONAL WAVE EMISSION: THE CASE OF XTE J1814-338 AND SAX J1808.4-3658 , 2011, 1106.6264.

[39]  B. Krishnan,et al.  Targeted search for continuous gravitational waves: Bayesian versus maximum-likelihood statistics , 2009, 0907.2569.

[40]  D. Chakrabarty The Spin Distribution of Millisecond X-ray Pulsars , 2008, 0809.4031.

[41]  B. Krishnan,et al.  Cross-correlation search for periodic gravitational waves , 2007, 0712.1578.

[42]  Reinhard Prix,et al.  Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces , 2007, 0707.0428.

[43]  R. Prix Search for continuous gravitational waves: metric of the multi-detector F-statistic , 2006, gr-qc/0606088.

[44]  A. Melatos,et al.  Gravitational Radiation from an Accreting Millisecond Pulsar with a Magnetically Confined Mountain , 2005, astro-ph/0503287.

[45]  C. Messenger,et al.  Searching for gravitational waves from low mass x-ray binaries , 2004 .

[46]  E. Morgan,et al.  Nuclear-powered millisecond pulsars and the maximum spin frequency of neutron stars , 2003, Nature.

[47]  E. Fomalont,et al.  Scorpius X-1: The Evolution and Nature of the Twin Compact Radio Lobes , 2001, astro-ph/0104372.

[48]  Alberto Vecchio,et al.  Searching for continuous gravitational wave sources in binary systems , 2000, gr-qc/0011085.

[49]  Curt Cutler,et al.  Deformations of accreting neutron star crusts and gravitational wave emission , 2000, astro-ph/0001136.

[50]  P. Brady,et al.  Searching for periodic sources with LIGO. II. Hierarchical searches , 1998, gr-qc/9812014.

[51]  B. Schutz,et al.  An efficient matched filtering algorithm for the detection of continuous gravitational wave signals , 1999, gr-qc/9912029.

[52]  E. Fomalont,et al.  High-Resolution Parallax Measurements of Scorpius X-1 , 1999 .

[53]  Lars Bildsten,et al.  Gravitational Radiation and Rotation of Accreting Neutron Stars , 1998, astro-ph/9804325.

[54]  Bernard F. Schutz,et al.  Gravitational waves from hot young rapidly rotating neutron stars , 1998, gr-qc/9804044.

[55]  B. Schutz,et al.  Data analysis of gravitational-wave signals from spinning neutron stars. I. The signal and its detection , 1998, gr-qc/9804014.

[56]  N. Andersson A New Class of Unstable Modes of Rotating Relativistic Stars , 1997, gr-qc/9706075.

[57]  Bernard F. Schutz,et al.  Searching for periodic sources with LIGO , 1997, gr-qc/9702050.

[58]  Thomas A. Prince,et al.  Observations of Accreting Pulsars , 1997, astro-ph/9707125.

[59]  E. Vishniac,et al.  Torque Reversal in Accretion-powered X-Ray Pulsars , 1997, astro-ph/9704269.

[60]  Bernard F. Schutz,et al.  Gravitational radiation from accreting neutron stars , 1997 .

[61]  Günther Hasinger,et al.  Two patterns of correlated x-ray timing and spectral behaviour in low-mass x-ray binaries , 1989 .

[62]  K. Prendergast,et al.  On the nature of some galactic X-ray sources , 1968 .