Dopamine signaling promotes tissue-resident memory differentiation of CD8+ T cells and antitumor immunity.

Tissue-resident memory CD8+ T (TRM)-cells have been associated with robust protective anti-tumor immune responses and improved prognosis of cancer patients. Therefore, therapeutic strategies that modulate either the production or activity of TRM cells could be effective for treating cancer. Using a high-throughput drug screen, we showed that the neurotransmitter dopamine drives differentiation of CD8+ T cells into CD103+ TRM cells. In murine syngeneic tumor xenograft models and clinical human colon cancer samples, DRD5 served as the major functional dopamine receptor on CD8+ T cells and positively correlated with TRM cell density. DRD5 deficiency led to a failure of CD8+ T cells to accumulate in tissues, resulting in impaired TRM cell formation, reduced effector function, and uncontrolled disease progression. Moreover, dopamine treatment promoted the antitumor activity of CD8+ T cells and suppressed colorectal cancer growth in immunocompentent mouse models, and ex-vivo pre-conditioning with dopamine enhanced the in vivo efficacy of CAR-T cells. Finally, in a colorectal cancer patient cohort, dopamine expression was positively associated with patient survival and CD8+ T cell infiltration. These findings suggest that dopaminergic immunoregulation plays an important role in the differentiation of CD8+ cells into CD103+ TRM cells and thereby modulates TRM-elicited antitumor immunity in colorectal cancer.