Abnormal lignin in a loblolly pine mutant.

Novel lignin is formed in a mutant loblolly pine (Pinus taeda L.) severely depleted in cinnamyl alcohol dehydrogenase (E.C. 1.1.1.195), which converts coniferaldehyde to coniferyl alcohol, the primary lignin precursor in pines. Dihydroconiferyl alcohol, a monomer not normally associated with the lignin biosynthetic pathway, is the major component of the mutant's lignin, accounting for approximately 30 percent (versus approximately 3 percent in normal pine) of the units. The level of aldehydes, including new 2-methoxybenzaldehydes, is also increased. The mutant pines grew normally indicating that, even within a species, extensive variations in lignin composition need not disrupt the essential functions of lignin.

[1]  L. Davin,et al.  Lignin and lignan biosynthesis: distinctions and reconciliations , 1998 .

[2]  E. Adler,et al.  Coniferylaldehydgruppem im Holz und in isolierten Ligninpräparaten. , 1948 .

[3]  D. Shibata,et al.  Red-brown color of lignified tissues of transgenic plants with antisense CAD gene : wine-red lignin from coniferyl aldehyde , 1994 .

[4]  R. Sederoff,et al.  Variation in Lignin Content and Composition (Mechanisms of Control and Implications for the Genetic Improvement of Plants) , 1996, Plant physiology.

[5]  R. Savidge Dihydroconiferyl alcohol in developing xylem of Pinus contorta , 1986 .

[6]  A. Bax,et al.  Sensitivity-enhanced two-dimensional heteronuclear relayed coherence transfer NMR spectroscopy , 1986 .

[7]  Ronald D. Hatfield,et al.  Lignin-ferulate cross-links in grasses: active incorporation of ferulate polysaccharide esters into ryegrass lignins , 1995 .

[8]  G. Mathison Forage cell wall structure and digestibility , 1995 .

[9]  J. Ralph An unusual lignin from kenaf , 1996 .

[10]  J. Kuc,et al.  THE ABNORMAL LIGNINS PRODUCED BY THE BROWN-MIDRIB MUTANTS OF MAIZE. I. THE BROWN-MIDRIB-1 MUTANT. , 1964, Archives of biochemistry and biophysics.

[11]  D. Inzé,et al.  Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar , 1996, Plant physiology.

[12]  B. Chabbert,et al.  Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase , 1994 .

[13]  J. Ralph,et al.  Facile large-scale synthesis of coniferyl, sinapyl, and p-coumaryl alcohol , 1992 .

[14]  V. L. Lechtenberg,et al.  Lignin biochemistry of normal and brown midrib mutant sorghum , 1980 .

[15]  D. Shibata,et al.  Increase of Cinnamaldehyde Groups in Lignin of Transgenic Tobacco Plants Carrying an Antisense Gene for Cinnamyl Alcohol Dehydrogenase , 1995 .

[16]  D. Buxton,et al.  A Comparison of the Insoluble Residues Produced by the Klason Lignin and Acid Detergent Lignin Procedures , 1994 .

[17]  F. Vignols,et al.  The brown midrib3 (bm3) mutation in maize occurs in the gene encoding caffeic acid O-methyltransferase. , 1995, The Plant cell.

[18]  R. Sederoff,et al.  Purification, Characterization, and Cloning of Cinnamyl Alcohol Dehydrogenase in Loblolly Pine (Pinus taeda L.). , 1992, Plant physiology.

[19]  D. A. Whiting,et al.  Oxidative Coupling of Phenols and Phenol Ethers , 1991 .

[20]  Brigitte Chabbert,et al.  Biological variability in lignification of maize: Expression of the brown midrib bm3 mutation in three maize cultivars , 1994 .

[21]  I. Kilpeläinen,et al.  Dibenzodioxocins; a novel type of linkage in softwood lignins , 1995 .

[22]  Richard F. Helm,et al.  Pathway of p-Coumaric Acid Incorporation into Maize Lignin As Revealed by NMR , 1994 .

[23]  T. E. Timell Compression Wood in Gymnosperms , 1986 .

[24]  KARL FREUDENBERG,et al.  Biosynthesis and Constitution of Lignin , 1959, Nature.

[25]  R. Bailey,et al.  Chemistry and Biochemistry of Herbage , 1973 .

[26]  N. Sakurai,et al.  Stimulation by Dihydroconiferyl Alcohol of Auxin-Induced Cell Expansion in Helianthus tuberosus L. Tuber Slices , 1983 .

[27]  A. Björkman Isolation of Lignin from Finely Divided Wood with Neutral Solvents , 1954, Nature.

[28]  C. Chapple,et al.  An Arabidopsis mutant defective in the general phenylpropanoid pathway. , 1992, The Plant cell.

[29]  Norman G. Lewis,et al.  Stereoselective Bimolecular Phenoxy Radical Coupling by an Auxiliary (Dirigent) Protein Without an Active Center , 1997, Science.

[30]  C. Chapple,et al.  Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Kyosti V. Sarkanen,et al.  Lignins : occurrence, formation, structure and reactions , 1971 .