Synchronization-Based Parameter Estimation in Chaotic Dynamical Systems

We examine a method of estimating unknown parameters in models of chaotic dynamical systems by synchronizing the model with the time series measured as output of the system. The method drives the model’s parameters by a set of proper parameter update rules to the true values of the parameters of the modeled system. The theory on how to construct this parameter update rules is given along with simple demonstrations with the Lorenz and Rossler systems. Both the scenario when the output represents the full system of the state, and the case when it is a scalar time series representing a function of the system variables are considered. We demonstrate how to apply the method for estimating the topology of a network of chaotic oscillators. Finally, we illustrate its application to estimating parameters of spatially extended systems that possess translational symmetry with a toy atmospheric model.

[1]  R. Konnur Synchronization-based approach for estimating all model parameters of chaotic systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  U. Parlitz,et al.  Inferring Network Connectivity by Delayed Feedback Control , 2011, PloS one.

[3]  C. Grebogi,et al.  Using geometric control and chaotic synchronization to estimate an unknown model parameter. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Wen-Xu Wang,et al.  Time-series–based prediction of complex oscillator networks via compressive sensing , 2011 .

[5]  N. N. Verichev,et al.  Stochastic synchronization of oscillations in dissipative systems , 1986 .

[6]  Baake,et al.  Fitting ordinary differential equations to chaotic data. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[7]  Ljupco Kocarev,et al.  Identical synchronization, with translation invariance, implies parameter estimation , 2007 .

[8]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems , 1983 .

[9]  Debin Huang Synchronization-based estimation of all parameters of chaotic systems from time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[11]  Jürgen Kurths,et al.  Chaos synchronization and parameter estimation from a scalar output signal. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Henk Nijmeijer,et al.  A dynamical control view on synchronization , 2001 .

[13]  P. Bryant Optimized synchronization of chaotic and hyperchaotic systems. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[15]  India,et al.  Use of synchronization and adaptive control in parameter estimation from a time series , 1998, chao-dyn/9804005.

[16]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. II: The Mapping Approach , 1983 .

[17]  Haipeng Peng,et al.  Parameter estimation of dynamical systems via a chaotic ant swarm. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Marc Timme,et al.  Revealing network connectivity from response dynamics. , 2006, Physical review letters.

[19]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[20]  Parlitz,et al.  Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.

[21]  Chaohua Dai,et al.  Seeker optimization algorithm for parameter estimation of time-delay chaotic systems. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Mark Kostuk,et al.  Dynamical estimation of neuron and network properties I: variational methods , 2011, Biological Cybernetics.

[23]  Konnur Equivalence of Synchronization and Control of Chaotic Systems. , 1996, Physical review letters.

[24]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[25]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. III Mapping Model for Continuous System , 1984 .

[26]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[27]  Henk Nijmeijer,et al.  An observer looks at synchronization , 1997 .

[28]  Ulrich Parlitz,et al.  Estimating parameters by autosynchronization with dynamics restrictions. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[30]  Ljupco Kocarev,et al.  Estimating topology of networks. , 2006, Physical review letters.

[31]  Ljupco Kocarev,et al.  Synchronizing Spatiotemporal Chaos of Partial Differential Equations , 1997 .

[32]  Henry D I Abarbanel,et al.  Parameter and state estimation of experimental chaotic systems using synchronization. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  M. Rabinovich,et al.  Stochastic synchronization of oscillation in dissipative systems , 1986 .

[34]  U. Parlitz,et al.  State and parameter estimation using unconstrained optimization. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Scaling Behaviors of Characteristic Exponents near Chaotic Transition Points , 1984 .

[36]  Hirokazu Fujisaka,et al.  Statistical Dynamics Generated by Fluctuations of Local Lyapunov Exponents , 1983 .

[37]  James M. Jeanne,et al.  Estimation of parameters in nonlinear systems using balanced synchronization. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Parlitz,et al.  Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Joaquín Míguez,et al.  Adaptive approximation method for joint parameter estimation and identical synchronization of chaotic systems. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Amritkar,et al.  Dynamic algorithm for parameter estimation and its applications , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  Mark Kostuk,et al.  Dynamical State and Parameter Estimation , 2009, SIAM J. Appl. Dyn. Syst..

[42]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[43]  Jinde Cao,et al.  Parameter identification of dynamical systems from time series. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Ulrich Parlitz,et al.  Synchronization and Control Based Parameter Identification , 2009, Intelligent Computing Based on Chaos.