An edge detection technique using local smoothing and statistical hypothesis testing

An edge detection technique based on local smoothing and statistical hypothesis testing for the detection and localization of step edges and roof edges is proposed. Smoothing and statistical hypothesis testing procedures for detection and localization of step edges and roof edges are formulated. Experimental results on gray-scale images are presented. The merits, limitations and factors critical to the performance of the proposed technique are discussed. Possible improvements and future research directions are outlined.

[1]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Suchendra M. Bhandarkar,et al.  An edge detection technique using genetic algorithm-based optimization , 1994, Pattern Recognit..

[3]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Robert M. Haralick,et al.  Digital Step Edges from Zero Crossing of Second Directional Derivatives , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Scott T. Acton,et al.  Anisotropic edge detection using mean field annealing , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[7]  Ugo Montanari,et al.  On the optimal detection of curves in noisy pictures , 1971, CACM.

[8]  F. R. Hansen,et al.  Image segmentation using simple markov field models , 1982, Comput. Graph. Image Process..

[9]  K. Shanmugam,et al.  Optimum edge detection filter. , 1977, Applied optics.

[10]  B. Yandell,et al.  Jump Detection in Regression Surfaces , 1997 .

[11]  Edward J. Delp,et al.  A Cost Minimization Approach to Edge Detection Using Simulated Annealing , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Jun Shen,et al.  An optimal linear operator for step edge detection , 1992, CVGIP Graph. Model. Image Process..

[14]  J. W. Modestino,et al.  The contour extraction problem with biomedical applications , 1977 .

[15]  David Lee,et al.  Discontinuity detection and thresholding-a stochastic approach , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[16]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  Alberto Martelli,et al.  An application of heuristic search methods to edge and contour detection , 1976, CACM.

[18]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  G. K. Bhattacharyya,et al.  Statistical Concepts And Methods , 1978 .

[20]  Kim L. Boyer,et al.  On Optimal Infinite Impulse Response Edge Detection Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Jun S. Huang,et al.  Statistical theory of edge detection , 1988, Comput. Vis. Graph. Image Process..

[22]  David Malah,et al.  A study of edge detection algorithms , 1982, Comput. Graph. Image Process..

[23]  Edward J. Delp,et al.  A comparative cost function approach to edge detection , 1989, IEEE Trans. Syst. Man Cybern..

[24]  Edward J. Delp,et al.  A cost minimization approach to edge detection using simulated annealing , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[25]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[26]  Brian G. Schunck,et al.  A Two-Stage Algorithm for Discontinuity-Preserving Surface Reconstruction , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  T. Pavlidis,et al.  Residual Analysis for Feature Detection , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .