<p>We prove that every Besicovitch set in <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R cubed">
<mml:semantics>
<mml:msup>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mi mathvariant="double-struck">R</mml:mi>
</mml:mrow>
<mml:mn>3</mml:mn>
</mml:msup>
<mml:annotation encoding="application/x-tex">\mathbb {R}^3</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> must have Hausdorff dimension at least <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="5 slash 2 plus epsilon 0">
<mml:semantics>
<mml:mrow>
<mml:mn>5</mml:mn>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mo>/</mml:mo>
</mml:mrow>
<mml:mn>2</mml:mn>
<mml:mo>+</mml:mo>
<mml:msub>
<mml:mi>ϵ<!-- ϵ --></mml:mi>
<mml:mn>0</mml:mn>
</mml:msub>
</mml:mrow>
<mml:annotation encoding="application/x-tex">5/2+\epsilon _0</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> for some small constant <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="epsilon 0 greater-than 0">
<mml:semantics>
<mml:mrow>
<mml:msub>
<mml:mi>ϵ<!-- ϵ --></mml:mi>
<mml:mn>0</mml:mn>
</mml:msub>
<mml:mo>></mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
<mml:annotation encoding="application/x-tex">\epsilon _0>0</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>. This follows from a more general result about the volume of unions of tubes that satisfies the Wolff axioms. Our proof grapples with a new “almost counterexample” to the Kakeya conjecture, which we call the <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper L 2">
<mml:semantics>
<mml:msub>
<mml:mi>SL</mml:mi>
<mml:mn>2</mml:mn>
</mml:msub>
<mml:annotation encoding="application/x-tex">\operatorname {SL}_2</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula> example; this object resembles a Besicovitch set that has Minkowski dimension 3 but Hausdorff dimension <inline-formula content-type="math/mathml">
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="5 slash 2">
<mml:semantics>
<mml:mrow>
<mml:mn>5</mml:mn>
<mml:mrow class="MJX-TeXAtom-ORD">
<mml:mo>/</mml:mo>
</mml:mrow>
<mml:mn>2</mml:mn>
</mml:mrow>
<mml:annotation encoding="application/x-tex">5/2</mml:annotation>
</mml:semantics>
</mml:math>
</inline-formula>. We believe this example may be an interesting object for future study.</p>
[1]
Thomas Wolff,et al.
A mixed norm estimate for the X-ray transform
,
1998
.
[2]
Thomas Wolff,et al.
Recent work connected with the Kakeya problem
,
2007
.
[3]
L. Guth.
Degree reduction and graininess for Kakeya-type sets in $\mathbb{R}^3$
,
2014,
1402.0518.
[4]
Jean Bourgain,et al.
Besicovitch type maximal operators and applications to fourier analysis
,
1991
.
[5]
Terence Tao,et al.
On the multilinear restriction and Kakeya conjectures
,
2005,
math/0509262.
[6]
Thomas Wolff,et al.
An improved bound for Kakeya type maximal functions
,
1995
.
[7]
J. Bourgain,et al.
Bounds on Oscillatory Integral Operators Based on Multilinear Estimates
,
2010,
1012.3760.
[8]
Terence Tao,et al.
Recent progress on the Kakeya conjecture
,
2000
.
[9]
Terence Tao,et al.
An improved bound on the Minkowski dimension of Besicovitch sets in $\mathbb{R}^3$
,
2000
.
[10]
Larry Guth,et al.
On the Erdos distinct distance problem in the plane
,
2010,
1011.4105.
[11]
Zeev Dvir,et al.
On the size of Kakeya sets in finite fields
,
2008,
0803.2336.
[12]
Terence Tao,et al.
A sum-product estimate in finite fields, and applications
,
2003,
math/0301343.
[13]
J. Bourgain.
The discretized sum-product and projection theorems
,
2010
.
[14]
Terence Tao,et al.
Some Connections between Falconer's Distance Set Conjecture and Sets of Furstenburg Type
,
2001
.
[15]
D. Hilbert,et al.
Geometry and the Imagination
,
1953
.
[16]
Richard Wongkew,et al.
Volumes of tubular neighbourhoods of real algebraic varieties.
,
1993
.
[17]
Roy O. Davies,et al.
Some remarks on the Kakeya problem
,
1971,
Mathematical Proceedings of the Cambridge Philosophical Society.
[18]
Additive Combinatorics: Contents
,
2006
.
[19]
L. Guth,et al.
On the Erdős distinct distances problem in the plane
,
2015
.
[20]
J. Zahl,et al.
Polynomial Wolff axioms and Kakeya‐type estimates in R4
,
2017,
1701.07045.
[21]
Terence Tao,et al.
An improved bound on the Minkowski dimension of Besicovitch sets in R^3
,
1999
.
[22]
Larry Guth,et al.
The endpoint case of the Bennett–Carbery–Tao multilinear Kakeya conjecture
,
2008,
0811.2251.