An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³

<p>We prove that every Besicovitch set in <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R cubed"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mn>3</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {R}^3</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must have Hausdorff dimension at least <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="5 slash 2 plus epsilon 0"> <mml:semantics> <mml:mrow> <mml:mn>5</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> <mml:mo>+</mml:mo> <mml:msub> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding="application/x-tex">5/2+\epsilon _0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for some small constant <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="epsilon 0 greater-than 0"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>ϵ<!-- ϵ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">\epsilon _0>0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This follows from a more general result about the volume of unions of tubes that satisfies the Wolff axioms. Our proof grapples with a new “almost counterexample” to the Kakeya conjecture, which we call the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper L 2"> <mml:semantics> <mml:msub> <mml:mi>SL</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:annotation encoding="application/x-tex">\operatorname {SL}_2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> example; this object resembles a Besicovitch set that has Minkowski dimension 3 but Hausdorff dimension <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="5 slash 2"> <mml:semantics> <mml:mrow> <mml:mn>5</mml:mn> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">5/2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We believe this example may be an interesting object for future study.</p>

[1]  Thomas Wolff,et al.  A mixed norm estimate for the X-ray transform , 1998 .

[2]  Thomas Wolff,et al.  Recent work connected with the Kakeya problem , 2007 .

[3]  L. Guth Degree reduction and graininess for Kakeya-type sets in $\mathbb{R}^3$ , 2014, 1402.0518.

[4]  Jean Bourgain,et al.  Besicovitch type maximal operators and applications to fourier analysis , 1991 .

[5]  Terence Tao,et al.  On the multilinear restriction and Kakeya conjectures , 2005, math/0509262.

[6]  Thomas Wolff,et al.  An improved bound for Kakeya type maximal functions , 1995 .

[7]  J. Bourgain,et al.  Bounds on Oscillatory Integral Operators Based on Multilinear Estimates , 2010, 1012.3760.

[8]  Terence Tao,et al.  Recent progress on the Kakeya conjecture , 2000 .

[9]  Terence Tao,et al.  An improved bound on the Minkowski dimension of Besicovitch sets in $\mathbb{R}^3$ , 2000 .

[10]  Larry Guth,et al.  On the Erdos distinct distance problem in the plane , 2010, 1011.4105.

[11]  Zeev Dvir,et al.  On the size of Kakeya sets in finite fields , 2008, 0803.2336.

[12]  Terence Tao,et al.  A sum-product estimate in finite fields, and applications , 2003, math/0301343.

[13]  J. Bourgain The discretized sum-product and projection theorems , 2010 .

[14]  Terence Tao,et al.  Some Connections between Falconer's Distance Set Conjecture and Sets of Furstenburg Type , 2001 .

[15]  D. Hilbert,et al.  Geometry and the Imagination , 1953 .

[16]  Richard Wongkew,et al.  Volumes of tubular neighbourhoods of real algebraic varieties. , 1993 .

[17]  Roy O. Davies,et al.  Some remarks on the Kakeya problem , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Additive Combinatorics: Contents , 2006 .

[19]  L. Guth,et al.  On the Erdős distinct distances problem in the plane , 2015 .

[20]  J. Zahl,et al.  Polynomial Wolff axioms and Kakeya‐type estimates in R4 , 2017, 1701.07045.

[21]  Terence Tao,et al.  An improved bound on the Minkowski dimension of Besicovitch sets in R^3 , 1999 .

[22]  Larry Guth,et al.  The endpoint case of the Bennett–Carbery–Tao multilinear Kakeya conjecture , 2008, 0811.2251.