Towards Comprehensive Computational Models for Plan-Based Control of Autonomous Robots

In this paper we present an overview of recent developments in the plan-based control of autonomous robots. We identify computational principles that enable autonomous robots to accomplish complex, diverse, and dynamically changing tasks in challenging environments. These principles include plan-based high-level control, probabilistic reasoning, plan transformation, and context and resource-adaptive reasoning. We will argue that the development of comprehensive and integrated computational models of plan-based control requires us to consider different aspects of plan-based control — plan representation, reasoning, execution, and learning — together and not in isolation. This integrated approach enables us to exploit synergies between the different aspects and thereby come up with simpler and more powerful computational models. In the second part of the paper we describe Structured Reactive Controllers (SRCs) , our own approach to the development of a comprehensive computational model for the planbased control of robotic agents. We show how the principles, described in the first part of the paper, are incorporated into the SRCs and summarize results of several long-term experiments that demonstrate the practicality of SRCs.

[1]  Kurt D. Krebsbach,et al.  An Analysis of Sensor-Based Task Planning , 2007 .

[2]  Patrick Doherty,et al.  TALplanner: A temporal logic based forward chaining planner , 2001, Annals of Mathematics and Artificial Intelligence.

[3]  Michael Beetz Concurrent reactive plans: anticipating and forestalling execution failures , 2000 .

[4]  Bernhard Nebel,et al.  The FF Planning System: Fast Plan Generation Through Heuristic Search , 2011, J. Artif. Intell. Res..

[5]  M. K. Starr Perspectives on disaggregation , 1979 .

[6]  James A. Hendler,et al.  HTN Planning: Complexity and Expressivity , 1994, AAAI.

[7]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[8]  Wouter Maria Coenraad van Wezel,et al.  Tasks, hierarchies, and flexibility : planning in food processing industries , 2001 .

[9]  C FreuderEugene A Sufficient Condition for Backtrack-Free Search , 1982 .

[10]  Manuela M. Veloso,et al.  Analyzing Plans with Conditional Effects , 2002, AIPS.

[11]  Oren Etzioni,et al.  Omnipotence without Omniscience: Sensor Management in Planning , 1994, AAAI 1994.

[12]  Nils J. Nilsson,et al.  Artificial Intelligence , 1974, IFIP Congress.

[13]  Michael Beetz,et al.  Environment and Task Adaptation for Robotic Agents , 2000 .

[14]  Daniel S. Weld,et al.  Planning to Gather Information , 1996, AAAI/IAAI, Vol. 1.

[15]  Richard E. Korf,et al.  Macro-Operators: A Weak Method for Learning , 1985, Artif. Intell..

[16]  Matthew L. Ginsberg,et al.  Satisfiability Algorithms and Finite Quantification , 2000, KR.

[17]  Antonio González Muñoz,et al.  A three-level knowledge-based system for the generation of live and safe Petri nets for manufacturing systems , 2000, J. Intell. Manuf..

[18]  Subbarao Kambhampati,et al.  Hybrid Planning for Partially Hierarchical Domains , 1998, AAAI/IAAI.

[19]  A. Meystel,et al.  Theoretical foundations of planning and navigation for autonomous robots , 1987 .

[20]  Allen Newell,et al.  Human Problem Solving. , 1973 .

[21]  David E. Wilkins,et al.  A Call for Knowledge-Based Planning , 2001, AI Mag..

[22]  Barbara Hayes-Roth,et al.  A Cognitive Model of Planning , 1979, Cogn. Sci..

[23]  Manuela M. Veloso,et al.  Planning and Learning by Analogical Reasoning , 1994, Lecture Notes in Computer Science.

[24]  Christopher K. Riesbeck,et al.  Inside Case-Based Reasoning , 1989 .

[25]  Steven Minton,et al.  Selectively Generalizing Plans for Problem-Solving , 1985, IJCAI.

[26]  David E. Smith,et al.  Extending Graphplan to handle uncertainty and sensing actions , 1998, AAAI 1998.

[27]  S. Chipman The Remembered Present: A Biological Theory of Consciousness , 1990, Journal of Cognitive Neuroscience.

[28]  Asunción Gómez-Pérez,et al.  Knowledge Management through Ontologies , 1998, PAKM.

[29]  P. Smolensky On the proper treatment of connectionism , 1988, Behavioral and Brain Sciences.

[30]  Michael Beetz Structured Reactive Controllers , 2004, Autonomous Agents and Multi-Agent Systems.

[31]  D. McDermott Transformational Planning of Reactive Behavior , 1992 .

[32]  Wolfram Burgard,et al.  Probabilistic state estimation of dynamic objects with a moving mobile robot , 2001, Robotics Auton. Syst..

[33]  Daniel S. Weld,et al.  UCPOP: A Sound, Complete, Partial Order Planner for ADL , 1992, KR.

[34]  Eugene C. Freuder Complexity of K-Tree Structured Constraint Satisfaction Problems , 1990, AAAI.

[35]  Biplav Srivastava,et al.  A Common Data Representation for Organizing and Managing Annotations of Biochip Expression Data , 2002 .

[36]  Dirkje Magrieta Mietus Understanding planning for effective decision support , 1994 .

[37]  Steffen Hölldobler,et al.  BDD-based reasoning in the fluent calculus - first results , 2000, ArXiv.

[38]  Antonio González Muñoz,et al.  Mixing expressiveness and efficiency in a manufacturing planner , 2001, J. Exp. Theor. Artif. Intell..

[39]  Kenneth N. McKay,et al.  ‘Common sense’ realities of planning and scheduling in printed circuit board production , 1995 .

[40]  Reid G. Simmons,et al.  Solving Robot Navigation Problems with Initial Pose Uncertainty Using Real-Time Heuristic Search , 1998, AIPS.

[41]  Michael Beetz Concurrent Reactive Plans , 2001, Lecture Notes in Computer Science.

[42]  Maria Gini,et al.  Deferred Planning and Sensor Use , 1990 .

[43]  Stephen F. Smith,et al.  Knowledge-based production management approaches, results and prospects , 1992 .

[44]  Alex M. Andrew,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2002 .

[45]  Terence Critchlow,et al.  Automatic Generation of Warehouse Mediators Using an Ontology Engine , 1998, KRDB.

[46]  Jerry R. Hobbs,et al.  DAML-S: Semantic Markup for Web Services , 2001, SWWS.

[47]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[48]  Keith Golden,et al.  Planning and knowledge representation for softbots , 1997 .

[49]  Richard Fikes,et al.  STRIPS: A New Approach to the Application of Theorem Proving to Problem Solving , 1971, IJCAI.

[50]  Drew McDermott,et al.  A reactive plan language , 1991 .

[51]  Anthony Barrett,et al.  Task-Decomposition via Plan Parsing , 1994, AAAI.

[52]  Marco Baioletti,et al.  Encoding Planning Constraints into Partial Order Planning Domains , 1998, KR 1998.

[53]  R.J.J.M. Jorna,et al.  Plannen en roosteren: taakgericht analyseren, ontwerpen en ondersteunen , 1996 .

[54]  Michael Beetz Structured reactive controllers: controlling robots that perform everyday activity , 1999, AGENTS '99.

[55]  Richard Waldinger,et al.  Achieving several goals simultaneously , 1977 .

[56]  Patrik Haslum,et al.  Planning with Reduced Operator Sets , 2000, AIPS.

[57]  Gerald Jay Sussman,et al.  A Computer Model of Skill Acquisition , 1975 .

[58]  Daniel S. Weld,et al.  Probabilistic Planning with Information Gathering and Contingent Execution , 1994, AIPS.

[59]  Jaime G. Carbonell,et al.  Learning by experimentation: the operator refinement method , 1990 .

[60]  Kristian J. Hammond,et al.  CHEF: A Model of Case-Based Planning , 1986, AAAI.

[61]  Wolfram Burgard,et al.  Integrated, plan-based control of autonomous robot in human environments , 2001, IEEE Intelligent Systems.

[62]  Oren Etzioni,et al.  A softbot-based interface to the Internet , 1994, CACM.

[63]  Earl D. Sacerdoti,et al.  The Nonlinear Nature of Plans , 1975, IJCAI.

[64]  Val Tannen,et al.  K2/Kleisli and GUS: Experiments in integrated access to genomic data sources , 2001, IBM Syst. J..

[65]  Shlomo Zilberstein,et al.  Using Anytime Algorithms in Intelligent Systems , 1996, AI Mag..

[66]  Richard E. Korf,et al.  Planning as Search: A Quantitative Approach , 1987, Artif. Intell..

[67]  Charles Wallis,et al.  Computation and cognition , 2003, J. Exp. Theor. Artif. Intell..

[68]  D. Fox,et al.  Integrated Plan-based Control of Autonomous Service Robots in Human Environments , 2001 .

[69]  Barry Smyth,et al.  Remembering To Forget: A Competence-Preserving Case Deletion Policy for Case-Based Reasoning Systems , 1995, IJCAI.

[70]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[71]  Jaime G. Carbonell,et al.  Towards a General Framework for Composing Disjunctive and Iterative Macro-operators , 1989, IJCAI.

[72]  S. Kambhampati,et al.  Learning Explanation-Based Search Control Rules for Partial Order Planning , 1994, AAAI.

[73]  Hector J. Levesque,et al.  GOLOG: A Logic Programming Language for Dynamic Domains , 1997, J. Log. Program..

[74]  Richard Reviewer-Granger Unified Theories of Cognition , 1991, Journal of Cognitive Neuroscience.

[75]  P. Pandurang Nayak,et al.  Remote Agent: To Boldly Go Where No AI System Has Gone Before , 1998, Artif. Intell..

[76]  Earl D. Sacerdoti,et al.  Planning in a Hierarchy of Abstraction Spaces , 1974, IJCAI.

[77]  A. Verbraek,et al.  Developing an adaptive scheduling support environment , 1991 .

[78]  James A. Hendler,et al.  A Validation-Structure-Based Theory of Plan Modification and Reuse , 1992, Artif. Intell..

[79]  Robert James Firby,et al.  Adaptive execution in complex dynamic worlds , 1989 .

[80]  Craig Boutilier,et al.  Decision-Theoretic Planning: Structural Assumptions and Computational Leverage , 1999, J. Artif. Intell. Res..

[81]  Nicholas Kushmerick,et al.  An Algorithm for Probabilistic Planning , 1995, Artif. Intell..

[82]  HalevyAlon,et al.  MiniCon: A scalable algorithm for answering queries using views , 2001, VLDB 2001.

[83]  Amy L. Lansky,et al.  AI-based planning for data analysis , 1994, IEEE Expert.

[84]  Karen Zita Haigh,et al.  Xavier: experience with a layered robot architecture , 1997, SGAR.

[85]  P. Pandurang Nayak,et al.  A Reactive Planner for a Model-based Executive , 1997, IJCAI.

[86]  Martha E. Pollack,et al.  There's More to Life than Making Plans: Plan Management in Dynamic, Multiagent Environments , 1999, AI Mag..

[87]  M. Veloso Towards Mixed-Initiative Rationale-Supported Planning , 1996 .

[88]  Michael Beetz,et al.  Probabilistic Hybrid Action Models for Predicting Concurrent Percept-Driven Robot Behavior , 2000, AIPS.

[89]  M. Kanehisa,et al.  DBGET/LinkDB: an integrated database retrieval system. , 1998, Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing.

[90]  Tran Cao Son,et al.  Formalizing sensing actions A transition function based approach , 2001, Artif. Intell..

[91]  Armin B. Cremers,et al.  Transparent, Flexible, and Resource-adaptive Image Processing for Autonomous Service Robots , 1998, ECAI.

[92]  P. Pandurang Nayak,et al.  Fast Context Switching in Real-Time Propositional Reasoning , 1997, AAAI/IAAI.

[93]  Sebastian Thrun,et al.  Probabilistic Algorithms in Robotics , 2000, AI Mag..

[94]  Jaime G. Carbonell,et al.  Learning effective search control knowledge: an explanation-based approach , 1988 .

[95]  Alessandro Saffiotti,et al.  Anchoring Symbols to Sensor Data: Preliminary Report , 2000, AAAI/IAAI.

[96]  Guus Schreiber,et al.  KADS : a principled approach to knowledge-based system development , 1993 .

[97]  Marco Roveri,et al.  Recent Advances in AI Planning , 1999, Lecture Notes in Computer Science.

[98]  Richard Fikes,et al.  Learning and Executing Generalized Robot Plans , 1993, Artif. Intell..

[99]  Wolfram Burgard,et al.  Probabilistic Algorithms and the Interactive Museum Tour-Guide Robot Minerva , 2000, Int. J. Robotics Res..

[100]  D. M. Hutton,et al.  Cambrian Intelligence: The Early History of the New AI , 2000 .

[101]  Blai Bonet,et al.  Planning with Incomplete Information as Heuristic Search in Belief Space , 2000, AIPS.

[102]  Mark A. Peot,et al.  Conditional nonlinear planning , 1992 .

[103]  Rachid Alami,et al.  Multi-robot cooperation in the MARTHA project , 1998, IEEE Robotics Autom. Mag..

[104]  Frédéric Goualard,et al.  Universally Quantified Interval Constraints , 2000, CP.

[105]  Edwin P. D. Pednault,et al.  ADL: Exploring the Middle Ground Between STRIPS and the Situation Calculus , 1989, KR.

[106]  Mark S. Fox,et al.  Constraint-Directed Search: A Case Study of Job-Shop Scheduling , 1987 .

[107]  Penelope M. Sanderson,et al.  The Human Planning and Scheduling Role in Advanced Manufacturing Systems: An Emerging Human Factors Domain , 1989 .

[108]  Keith Golden,et al.  Leap Before You Look: Information Gathering in the PUCCINI Planner , 1998, AIPS.

[109]  Oren Etzioni,et al.  Sound and Efficient Closed-World Reasoning for Planning , 1997, Artif. Intell..

[110]  Oren Etzioni,et al.  An Approach to Planning with Incomplete Information , 1992, KR.

[111]  Wolfram Burgard,et al.  Experiences with an Interactive Museum Tour-Guide Robot , 1999, Artif. Intell..

[112]  Gerald Tesauro,et al.  Practical issues in temporal difference learning , 1992, Machine Learning.

[113]  Antonio González,et al.  On the Adequacy of Hierarchical Planning Characteristics for Real-World Problem Solving , 2014 .

[114]  Olivier Lhomme,et al.  Consistency Techniques for Numeric CSPs , 1993, IJCAI.

[115]  Hector J. Levesque,et al.  ConGolog, a concurrent programming language based on the situation calculus , 2000, Artif. Intell..

[116]  R. Reiter The projection problem in the situation calculus: a soundness and completeness result, with an application to database updates , 1992 .

[117]  Drew McDermott,et al.  Robot Planning , 1991, AI Mag..

[118]  Kutluhan Erol,et al.  Hierarchical task network planning: formalization, analysis, and implementation , 1996 .

[119]  David P. Miller,et al.  Experiences with an architecture for intelligent, reactive agents , 1995, J. Exp. Theor. Artif. Intell..