Complete genome sequence of Thermosphaera aggregans type strain (M11TLT)
暂无分享,去创建一个
S. Spring | N. Kyrpides | H. Klenk | F. Chen | V. Markowitz | S. Lucas | J. Eisen | P. Hugenholtz | A. Lapidus | Cliff Han | N. Ivanova | T. Brettin | Krishna Palaniappan | M. Göker | K. Mavromatis | L. Goodwin | Amrita Pati | M. Nolan | A. Copeland | Jan-Fang Cheng | D. Bruce | H. Tice | J. Bristow | J. Detter | L. Hauser | M. Land | R. Rachel | S. Pitluck | Amy Chen | Yun-juan Chang | K. Davenport | R. Tapia | E. Brambilla | T. Heimerl | Galina Ovchinnikova | Cynthia C. Jeffries | F. Weikl | Matt Nolan
[1] Natalia N. Ivanova,et al. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes , 2010, Nature Methods.
[2] Miriam L. Land,et al. Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .
[3] S. Spring,et al. Complete genome sequence of Desulfohalobium retbaense type strain (HR100T) , 2010, Standards in genomic sciences.
[4] Natalia N. Ivanova,et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea , 2009, Nature.
[5] I-Min A. Chen,et al. IMG ER: a system for microbial genome annotation expert review and curation , 2009, Bioinform..
[6] Lynne A. Goodwin,et al. Complete genome sequence of Kytococcus sedentarius type strain (541T) , 2009, Standards in genomic sciences.
[7] A. Mardanov,et al. Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeon isolated from a Kamchatka hot spring. , 2009, International journal of systematic and evolutionary microbiology.
[8] Alexandros Stamatakis,et al. How Many Bootstrap Replicates Are Necessary? , 2009, RECOMB.
[9] Luke E. Ulrich,et al. The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota , 2009, BMC Genomics.
[10] E. Shock,et al. Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin , 2009, Extremophiles.
[11] N. Ravin,et al. Complete Genome Sequence of the Anaerobic, Protein-Degrading Hyperthermophilic Crenarchaeon Desulfurococcus kamchatkensis , 2008, Journal of bacteriology.
[12] J. Rougemont,et al. A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.
[13] G. Rákhely,et al. Formate hydrogenlyase in the hyperthermophilic archaeon, Thermococcus litoralis , 2008, BMC Microbiology.
[14] E. Birney,et al. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.
[15] Chris F. Taylor,et al. The minimum information about a genome sequence (MIGS) specification , 2008, Nature Biotechnology.
[16] I-Min A. Chen,et al. The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata , 2007, Nucleic Acids Res..
[17] T. Fukui,et al. A Novel ADP-forming Succinyl-CoA Synthetase in Thermococcus kodakaraensis Structurally Related to the Archaeal Nucleoside Diphosphate-forming Acetyl-CoA Synthetases* , 2007, Journal of Biological Chemistry.
[18] H. Huber,et al. A sodium ion‐dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus , 2007, The FEBS journal.
[19] M. Rossi,et al. A comparative infrared spectroscopic study of glycoside hydrolases from extremophilic archaea revealed different molecular mechanisms of adaptation to high temperatures , 2007, Proteins.
[20] Michael W. W. Adams,et al. Insights into the Metabolism of Elemental Sulfur by the Hyperthermophilic Archaeon Pyrococcus furiosus: Characterization of a Coenzyme A- Dependent NAD(P)H Sulfur Oxidoreductase , 2007, Journal of bacteriology.
[21] James R. Knight,et al. Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.
[22] Y. Rogers,et al. Genomics: Massively parallel sequencing , 2005, Nature.
[23] J. Amend,et al. Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA , 2005 .
[24] T. Swartz,et al. The Mrp system: a giant among monovalent cation/proton antiporters? , 2005, Extremophiles.
[25] R. Hedderich. Energy-Converting [NiFe] Hydrogenases from Archaea and Extremophiles: Ancestors of Complex I , 2004, Journal of bioenergetics and biomembranes.
[26] W. D. de Vos,et al. The unique features of glycolytic pathways in Archaea. , 2003, The Biochemical journal.
[27] M. Adams,et al. A simple energy-conserving system: Proton reduction coupled to proton translocation , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[28] J. Weissenbach,et al. An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi , 2003, Molecular microbiology.
[29] J. Andersson,et al. Evolutionary Analyses of the Small Subunit of Glutamate Synthase: Gene Order Conservation, Gene Fusions, and Prokaryote-to- Eukaryote Lateral Gene Transfers , 2002, Eukaryotic Cell.
[30] Christopher J. Lee,et al. Multiple sequence alignment using partial order graphs , 2002, Bioinform..
[31] M. Ashburner,et al. Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.
[32] Wei Qian,et al. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.
[33] S. Kim,et al. Crystal structure of the β‐glycosidase from the hyperthermophile Thermosphaera aggregans: insights into its activity and thermostability , 1999, FEBS letters.
[34] H. Brinkmann,et al. NAD+-dependent Glyceraldehyde-3-phosphate Dehydrogenase from Thermoproteus tenax , 1998, The Journal of Biological Chemistry.
[35] M. Adams,et al. Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[36] J. Heider,et al. Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea , 1996, Journal of bacteriology.
[37] R. Huber,et al. Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis , 1995, Nature.
[38] M. Adams,et al. Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[39] O. Kandler,et al. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.
[40] W. Zillig,et al. Complex lipids from Desulfurococcus mobilis, a sulfur-reducing archaebacterium , 1987 .
[41] Holger W. Jannasch,et al. Staphylothermus marinus sp. nov. Represents a Novel Genus of Extremely Thermophilic Submarine Heterotrophic Archaebacteria Growing up to 98 °C , 1986 .
[42] W. Zillig,et al. Desulfurococcaceae, the Second Family of the Extremely Thermophilic, Anaerobic, Sulfur-Respiring Thermoproteales , 1982 .
[43] G. Garrity. Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.
[44] Goodwin,et al. Complete genome sequence of Desulfohalobium retbaense type strain ( HR 100 T ) , 2010 .
[45] Lynne A. Goodwin,et al. Complete genome sequence of Kytococcus sedentarius type strain (541 T ) , 2009 .
[46] S. Bennett. Solexa Ltd. , 2004, Pharmacogenomics.
[47] T. Itoh. Taxonomy of nonmethanogenic hyperthermophilic and related thermophilic archaea. , 2003, Journal of bioscience and bioengineering.
[48] R. Huber,et al. Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. , 1998, International journal of systematic bacteriology.
[49] Brian J. Tindall,et al. Sulfophobococcus zilligii gen. nov., spec. nov. a Novel Hyperthermophilic Archaeum Isolated from Hot Alkaline Springs of Iceland , 1997 .
[50] W. Schäfer,et al. Quinones from archaebacteria, II. Different types of quinones from sulphur-dependent archaebacteria. , 1986, Biological chemistry Hoppe-Seyler.