Complete genome sequence of Thermosphaera aggregans type strain (M11TLT)

Thermosphaera aggregans Huber et al. 1998 is the type species of the genus Thermosphaera, which comprises at the time of writing only one species. This species represents archaea with a hyperthermophilic, heterotrophic, strictly anaerobic and fermentative phenotype. The type strain M11TLT was isolated from a water-sediment sample of a hot terrestrial spring (Obsidian Pool, Yellowstone National Park, Wyoming). Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,316,595 bp long single replicon genome with its 1,410 protein-coding and 47 RNA genes is a part of the GenomicEncyclopedia ofBacteria andArchaea project.

[1]  Natalia N. Ivanova,et al.  GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes , 2010, Nature Methods.

[2]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[3]  S. Spring,et al.  Complete genome sequence of Desulfohalobium retbaense type strain (HR100T) , 2010, Standards in genomic sciences.

[4]  Natalia N. Ivanova,et al.  A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea , 2009, Nature.

[5]  I-Min A. Chen,et al.  IMG ER: a system for microbial genome annotation expert review and curation , 2009, Bioinform..

[6]  Lynne A. Goodwin,et al.  Complete genome sequence of Kytococcus sedentarius type strain (541T) , 2009, Standards in genomic sciences.

[7]  A. Mardanov,et al.  Desulfurococcus kamchatkensis sp. nov., a novel hyperthermophilic protein-degrading archaeon isolated from a Kamchatka hot spring. , 2009, International journal of systematic and evolutionary microbiology.

[8]  Alexandros Stamatakis,et al.  How Many Bootstrap Replicates Are Necessary? , 2009, RECOMB.

[9]  Luke E. Ulrich,et al.  The complete genome sequence of Staphylothermus marinus reveals differences in sulfur metabolism among heterotrophic Crenarchaeota , 2009, BMC Genomics.

[10]  E. Shock,et al.  Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin , 2009, Extremophiles.

[11]  N. Ravin,et al.  Complete Genome Sequence of the Anaerobic, Protein-Degrading Hyperthermophilic Crenarchaeon Desulfurococcus kamchatkensis , 2008, Journal of bacteriology.

[12]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[13]  G. Rákhely,et al.  Formate hydrogenlyase in the hyperthermophilic archaeon, Thermococcus litoralis , 2008, BMC Microbiology.

[14]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[15]  Chris F. Taylor,et al.  The minimum information about a genome sequence (MIGS) specification , 2008, Nature Biotechnology.

[16]  I-Min A. Chen,et al.  The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata , 2007, Nucleic Acids Res..

[17]  T. Fukui,et al.  A Novel ADP-forming Succinyl-CoA Synthetase in Thermococcus kodakaraensis Structurally Related to the Archaeal Nucleoside Diphosphate-forming Acetyl-CoA Synthetases* , 2007, Journal of Biological Chemistry.

[18]  H. Huber,et al.  A sodium ion‐dependent A1AO ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus , 2007, The FEBS journal.

[19]  M. Rossi,et al.  A comparative infrared spectroscopic study of glycoside hydrolases from extremophilic archaea revealed different molecular mechanisms of adaptation to high temperatures , 2007, Proteins.

[20]  Michael W. W. Adams,et al.  Insights into the Metabolism of Elemental Sulfur by the Hyperthermophilic Archaeon Pyrococcus furiosus: Characterization of a Coenzyme A- Dependent NAD(P)H Sulfur Oxidoreductase , 2007, Journal of bacteriology.

[21]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[22]  Y. Rogers,et al.  Genomics: Massively parallel sequencing , 2005, Nature.

[23]  J. Amend,et al.  Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA , 2005 .

[24]  T. Swartz,et al.  The Mrp system: a giant among monovalent cation/proton antiporters? , 2005, Extremophiles.

[25]  R. Hedderich Energy-Converting [NiFe] Hydrogenases from Archaea and Extremophiles: Ancestors of Complex I , 2004, Journal of bioenergetics and biomembranes.

[26]  W. D. de Vos,et al.  The unique features of glycolytic pathways in Archaea. , 2003, The Biochemical journal.

[27]  M. Adams,et al.  A simple energy-conserving system: Proton reduction coupled to proton translocation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Weissenbach,et al.  An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi , 2003, Molecular microbiology.

[29]  J. Andersson,et al.  Evolutionary Analyses of the Small Subunit of Glutamate Synthase: Gene Order Conservation, Gene Fusions, and Prokaryote-to- Eukaryote Lateral Gene Transfers , 2002, Eukaryotic Cell.

[30]  Christopher J. Lee,et al.  Multiple sequence alignment using partial order graphs , 2002, Bioinform..

[31]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[32]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[33]  S. Kim,et al.  Crystal structure of the β‐glycosidase from the hyperthermophile Thermosphaera aggregans: insights into its activity and thermostability , 1999, FEBS letters.

[34]  H. Brinkmann,et al.  NAD+-dependent Glyceraldehyde-3-phosphate Dehydrogenase from Thermoproteus tenax , 1998, The Journal of Biological Chemistry.

[35]  M. Adams,et al.  Pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyruvate decarboxylase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Heider,et al.  Characterization of 2-ketoisovalerate ferredoxin oxidoreductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fermentation by hyperthermophilic archaea , 1996, Journal of bacteriology.

[37]  R. Huber,et al.  Isolation of a hyperthermophilic archaeum predicted by in situ RNA analysis , 1995, Nature.

[38]  M. Adams,et al.  Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[39]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[40]  W. Zillig,et al.  Complex lipids from Desulfurococcus mobilis, a sulfur-reducing archaebacterium , 1987 .

[41]  Holger W. Jannasch,et al.  Staphylothermus marinus sp. nov. Represents a Novel Genus of Extremely Thermophilic Submarine Heterotrophic Archaebacteria Growing up to 98 °C , 1986 .

[42]  W. Zillig,et al.  Desulfurococcaceae, the Second Family of the Extremely Thermophilic, Anaerobic, Sulfur-Respiring Thermoproteales , 1982 .

[43]  G. Garrity Bergey’s Manual® of Systematic Bacteriology , 2012, Springer New York.

[44]  Goodwin,et al.  Complete genome sequence of Desulfohalobium retbaense type strain ( HR 100 T ) , 2010 .

[45]  Lynne A. Goodwin,et al.  Complete genome sequence of Kytococcus sedentarius type strain (541 T ) , 2009 .

[46]  S. Bennett Solexa Ltd. , 2004, Pharmacogenomics.

[47]  T. Itoh Taxonomy of nonmethanogenic hyperthermophilic and related thermophilic archaea. , 2003, Journal of bioscience and bioengineering.

[48]  R. Huber,et al.  Sulfur-inhibited Thermosphaera aggregans sp. nov., a new genus of hyperthermophilic archaea isolated after its prediction from environmentally derived 16S rRNA sequences. , 1998, International journal of systematic bacteriology.

[49]  Brian J. Tindall,et al.  Sulfophobococcus zilligii gen. nov., spec. nov. a Novel Hyperthermophilic Archaeum Isolated from Hot Alkaline Springs of Iceland , 1997 .

[50]  W. Schäfer,et al.  Quinones from archaebacteria, II. Different types of quinones from sulphur-dependent archaebacteria. , 1986, Biological chemistry Hoppe-Seyler.