Secure and privacy-preserving broadcast authentication for IVC

Vehicle-to-Vehicle(V2V) communication is a part of the future vehicular network. As the location information of vehicles is broadcasted frequently, there is a demand on privacy protection on this information. In this thesis we defined the requirements on privacy-protection broadcast authentication schemes for V2V communication. We analyzed the existing authentication schemes according to the requirements. But the major contribution of this thesis is that we devised an authentication scheme CLIBA on the messages of vehicles, which is based on the CL-Idemix protocol suite. The scheme realizes attribute authentication to prevent privacy leakage of vehicles. We also evaluated CLIBA according to the requirements. It shows that CLIBA fulfills most of the requirements except that the performance is not quite satisfactory compared to the strict efficiency requirement of V2V communication

[1]  Florian Hess,et al.  Efficient Identity Based Signature Schemes Based on Pairings , 2002, Selected Areas in Cryptography.

[2]  Sasa Radomirovic,et al.  Attacks on RFID Protocols , 2008, IACR Cryptol. ePrint Arch..

[3]  Huirong Fu,et al.  Privacy Issues of Vehicular Ad-Hoc Networks , 2010 .

[4]  Maxim Raya,et al.  Mix-Zones for Location Privacy in Vehicular Networks , 2007 .

[5]  Panagiotis Papadimitratos,et al.  Secure vehicular communication systems: design and architecture , 2008, IEEE Communications Magazine.

[6]  S. Team,et al.  Specification of the Identity Mixer Cryptographic Library Version 2 . 3 . 0 * , 2022 .

[7]  Yuguang Fang,et al.  An ID-based Framework Achieving Privacy and Non-Repudiation in Vehicular Ad Hoc Networks , 2007, MILCOM 2007 - IEEE Military Communications Conference.

[8]  Hannes Hartenstein,et al.  VANET: Vehicular Applications and Inter-Networking Technologies , 2010, VANET.

[9]  Joseph Gray Jackson,et al.  Privacy and Freedom , 1968 .

[10]  Panagiotis Papadimitratos,et al.  On the Performance of Secure Vehicular Communication Systems , 2011, IEEE Transactions on Dependable and Secure Computing.

[11]  Dawn Song,et al.  The TESLA Broadcast Authentication Protocol , 2002 .

[12]  Ivan Damgård,et al.  A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order , 2002, ASIACRYPT.

[13]  Bodo Möller Algorithms for Multi-exponentiation , 2001, Selected Areas in Cryptography.

[14]  Marc Emmelmann,et al.  Vehicular networking : automotive applications and beyond , 2010 .

[15]  Jan Camenisch,et al.  A Signature Scheme with Efficient Protocols , 2002, SCN.

[16]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[17]  Tim Dierks,et al.  The Transport Layer Security (TLS) Protocol Version 1.2 , 2008 .

[18]  Arati Baliga,et al.  An identity-based security framework For VANETs , 2006, VANET '06.

[19]  C. Eckert,et al.  Secure Revocable Anonymous Authenticated Inter-Vehicle Communication ( SRAAC ) , 2006 .

[20]  Levente Buttyán,et al.  On the Effectiveness of Changing Pseudonyms to Provide Location Privacy in VANETs , 2007, ESAS.

[21]  Adrian Perrig,et al.  Flexible, extensible, and efficient VANET authentication , 2009, Journal of Communications and Networks.

[22]  Hovav Shacham,et al.  Group signatures with verifier-local revocation , 2004, CCS '04.

[23]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[24]  Ke Zeng,et al.  Pseudonymous PKI for Ubiquitous Computing , 2006, EuroPKI.

[25]  Panagiotis Papadimitratos,et al.  Scalable & Resilient Vehicle-Centric Certificate Revocation List Distribution in Vehicular Communication Systems , 2020, IEEE Transactions on Mobile Computing.

[26]  Eric Rescorla,et al.  The Transport Layer Security (TLS) Protocol Version 1.1 , 2006, RFC.

[27]  C. P. Schnorr,et al.  Efficient Identification and Signatures for Smart Cards (Abstract) , 1989, EUROCRYPT.

[28]  Pin-Han Ho,et al.  GSIS: A Secure and Privacy-Preserving Protocol for Vehicular Communications , 2007, IEEE Transactions on Vehicular Technology.

[29]  Frederik Armknecht,et al.  Cross-layer Privacy Enhancement and Non-repudiation in Vehicular Communication , 2011 .

[30]  Elmar Schoch,et al.  Security Engineering for VANETs , 2006 .

[31]  Pierangela Samarati,et al.  Location privacy in pervasive computing , 2008 .

[32]  Sjouke Mauw,et al.  Untraceability of RFID Protocols , 2008, WISTP.

[33]  Panagiotis Papadimitratos,et al.  Secure vehicular communication systems: implementation, performance, and research challenges , 2008, IEEE Communications Magazine.

[34]  Zhendong Ma,et al.  Privacy Requirements in Vehicular Communication Systems , 2009, 2009 International Conference on Computational Science and Engineering.

[35]  Pin-Han Ho,et al.  ECPP: Efficient Conditional Privacy Preservation Protocol for Secure Vehicular Communications , 2008, IEEE INFOCOM 2008 - The 27th Conference on Computer Communications.

[36]  Thomas S. Heydt-Benjamin,et al.  Cryptographic Protocols of the Identity Mixer Library , 2009 .

[37]  Pierangela Samarati,et al.  Exploiting cryptography for privacy-enhanced access control: A result of the PRIME Project , 2010, J. Comput. Secur..

[38]  Michael Weber,et al.  V-Tokens for Conditional Pseudonymity in VANETs , 2010, 2010 IEEE Wireless Communication and Networking Conference.

[39]  Jan Camenisch,et al.  Efficient attributes for anonymous credentials , 2008, CCS.

[40]  David Cooper,et al.  Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile , 2008, RFC.

[41]  Jan Camenisch,et al.  How to win the clonewars: efficient periodic n-times anonymous authentication , 2006, CCS '06.