High-resolution Crystal Structure of Human Protease-activated Receptor 1 Bound to the Antagonist Vorapaxar Hhs Public Access

[1]  Aashish Manglik,et al.  Structure of the δ-opioid receptor bound to naltrindole , 2012, Nature.

[2]  Marc P. Bonaca,et al.  Vorapaxar in the secondary prevention of atherothrombotic events. , 2012, The New England journal of medicine.

[3]  L. Pardo,et al.  Crystal structure of the μ-opioid receptor bound to a morphinan antagonist , 2012, Nature.

[4]  Hugh Rosen,et al.  Crystal Structure of a Lipid G Protein–Coupled Receptor , 2012, Science.

[5]  Bryan L. Roth,et al.  Structure of the human kappa opioid receptor in complex with JDTic , 2012, Nature.

[6]  R. Stevens,et al.  Structure of the human k-opioid receptor in complex with JDTic , 2012 .

[7]  M. Hollenberg,et al.  Targeting proteinase-activated receptors: therapeutic potential and challenges , 2012, Nature Reviews Drug Discovery.

[8]  Albert C. Pan,et al.  Activation mechanism of the β2-adrenergic receptor , 2011, Proceedings of the National Academy of Sciences.

[9]  A. Vliet,et al.  Pharmacodynamics and pharmacokinetics of the novel PAR-1 antagonist vorapaxar (formerly SCH 530348) in healthy subjects , 2011, European Journal of Clinical Pharmacology.

[10]  Albert C. Pan,et al.  Pathway and mechanism of drug binding to G-protein-coupled receptors , 2011, Proceedings of the National Academy of Sciences.

[11]  S. Rasmussen,et al.  Crystal Structure of the β2Adrenergic Receptor-Gs protein complex , 2011, Nature.

[12]  K. Lindorff-Larsen,et al.  How robust are protein folding simulations with respect to force field parameterization? , 2011, Biophysical journal.

[13]  Cheng Zhang,et al.  Structure and Function of an Irreversible Agonist-β2 Adrenoceptor complex , 2010, Nature.

[14]  S. Rasmussen,et al.  Structure of a nanobody-stabilized active state of the β2 adrenoceptor , 2010, Nature.

[15]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[16]  S. Coughlin,et al.  Roles and interactions among protease-activated receptors and P2ry12 in hemostasis and thrombosis , 2010, Proceedings of the National Academy of Sciences.

[17]  Gianni De Fabritiis,et al.  Induced Effects of Sodium Ions on Dopaminergic G-Protein Coupled Receptors , 2010, PLoS Comput. Biol..

[18]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[19]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[20]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[21]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[22]  M. García-López,et al.  Thrombin-activated receptors: promising targets for cancer therapy? , 2010, Current medicinal chemistry.

[23]  B. Hille,et al.  Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support , 2016, PloS one.

[24]  Wilfred Pinfold,et al.  Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis , 2009, HiPC 2009.

[25]  J. P. Grossman,et al.  Millisecond-scale molecular dynamics simulations on Anton , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[26]  M. Caffrey Crystallizing membrane proteins for structure determination: use of lipidic mesophases. , 2009, Annual review of biophysics.

[27]  Ron O Dror,et al.  Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations , 2009, Proceedings of the National Academy of Sciences.

[28]  Ron O. Dror,et al.  Identification Of Two Distinct Inactive Conformations Of The Beta-2 Adrenergic Receptor Reconciles Structural And Biochemical Observations , 2009 .

[29]  V. Cherezov,et al.  Crystallizing membrane proteins using lipidic mesophases , 2009, Nature Protocols.

[30]  R. Stevens,et al.  GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function , 2007, Science.

[31]  Xiayang Qiu,et al.  Faculty Opinions recommendation of GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. , 2007 .

[32]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[33]  Rob Leurs,et al.  Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity. , 2007, Annual review of pharmacology and toxicology.

[34]  T. Schwartz,et al.  Molecular mechanism of 7TM receptor activation--a global toggle switch model. , 2006, Annual review of pharmacology and toxicology.

[35]  W. Greenlee,et al.  Discovery of potent orally active thrombin receptor (protease activated receptor 1) antagonists as novel antithrombotic agents. , 2005, Journal of medicinal chemistry.

[36]  S. Coughlin,et al.  Protease‐activated receptors in hemostasis, thrombosis and vascular biology , 2005, Journal of thrombosis and haemostasis : JTH.

[37]  R. Dror,et al.  Gaussian split Ewald: A fast Ewald mesh method for molecular simulation. , 2005, The Journal of chemical physics.

[38]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[39]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[40]  J. Baleja,et al.  Structural basis for thrombin activation of a protease-activated receptor: inhibition of intramolecular liganding. , 2003, Chemistry & biology.

[41]  H. Schiöth,et al.  The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. , 2003, Molecular pharmacology.

[42]  Marjorie M. Harding,et al.  Metal-ligand geometry relevant to proteins and in proteins: sodium and potassium. , 2002, Acta crystallographica. Section D, Biological crystallography.

[43]  K. Palczewski,et al.  Crystal Structure of Rhodopsin: A G‐Protein‐Coupled Receptor , 2002, Chembiochem : a European journal of chemical biology.

[44]  K. Neve,et al.  Modeling and mutational analysis of a putative sodium-binding pocket on the dopamine D2 receptor. , 2001, Molecular pharmacology.

[45]  P. Hünenberger,et al.  A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations , 2001, J. Comput. Chem..

[46]  L. Limbird,et al.  The role of a conserved inter-transmembrane domain interface in regulating alpha(2a)-adrenergic receptor conformational stability and cell-surface turnover. , 2001, Molecular pharmacology.

[47]  R. Scarborough,et al.  Extracellular mutations of protease-activated receptor-1 result in differential activation by thrombin and thrombin receptor agonist peptide. , 2000, Molecular pharmacology.

[48]  S. Coughlin,et al.  Thrombin signalling and protease-activated receptors , 2000, Nature.

[49]  A. IJzerman,et al.  Allosteric modulation of A(2A) adenosine receptors by amiloride analogues and sodium ions. , 2000, Biochemical pharmacology.

[50]  S. Coughlin,et al.  The Cytoplasmic Tails of Protease-activated Receptor-1 and Substance P Receptor Specify Sorting to Lysosomes versusRecycling* , 1999, The Journal of Biological Chemistry.

[51]  S. Coughlin,et al.  Termination of signaling by protease-activated receptor-1 is linked to lysosomal sorting. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[52]  S. Coughlin,et al.  Separate Signals for Agonist-independent and Agonist-triggered Trafficking of Protease-activated Receptor 1* , 1998, The Journal of Biological Chemistry.

[53]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[54]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[55]  S. Coughlin,et al.  Role of the Thrombin Receptor's Cytoplasmic Tail in Intracellular Trafficking , 1996, The Journal of Biological Chemistry.

[56]  S. Coughlin,et al.  Agonist Recognition by Proteinase-activated Receptor 2 and Thrombin Receptor , 1996, The Journal of Biological Chemistry.

[57]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[58]  F. Cohen,et al.  Mechanisms of Thrombin Receptor Agonist Specificity , 1995, The Journal of Biological Chemistry.

[59]  J. Welsh,et al.  Determinants of Thrombin Receptor Cleavage. RECEPTOR DOMAINS INVOLVED, SPECIFICITY, AND ROLE OF THE P3 ASPARTATE (*) , 1995, The Journal of Biological Chemistry.

[60]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[61]  J. Kutok,et al.  Identification of a novel thrombin receptor sequence required for activation-dependent responses. , 1994, Blood.

[62]  B. Kobilka,et al.  Intracellular targeting and trafficking of thrombin receptors. A novel mechanism for resensitization of a G protein-coupled receptor. , 1994, The Journal of biological chemistry.

[63]  J. Chen,et al.  Thrombin receptor activation. Confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. , 1994, The Journal of biological chemistry.

[64]  C W Turck,et al.  Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. , 1994, Biochemistry.

[65]  C. Turck,et al.  Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface , 1994, Nature.

[66]  K. Fahmy,et al.  Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[67]  B. Kobilka,et al.  Kinetics of thrombin receptor cleavage on intact cells. Relation to signaling. , 1993, The Journal of biological chemistry.

[68]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[69]  V. Wheaton,et al.  Domains specifying thrombin–receptor interaction , 1991, Nature.

[70]  C. Esmon,et al.  The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity. , 1991, The Journal of biological chemistry.

[71]  V. Wheaton,et al.  Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation , 1991, Cell.

[72]  C. A. Guyer,et al.  An aspartate conserved among G-protein receptors confers allosteric regulation of alpha 2-adrenergic receptors by sodium. , 1990, The Journal of biological chemistry.

[73]  A. Herz,et al.  Spontaneous association between opioid receptors and GTP-binding regulatory proteins in native membranes: specific regulation by antagonists and sodium ions. , 1990, Molecular pharmacology.

[74]  M. Fregly,et al.  Sodium and Potassium , 1914, The Dental register.

[75]  G. Meneely,et al.  Sodium and Potassium , 2009 .