Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area.
暂无分享,去创建一个
Wenchuan Wang | Feng Deng | Shilun Qiu | Hao Ren | Guangshan Zhu | Jun Xu | Shengqian Ma | Xiaofei Jing | J. Simmons | S. Qiu | G. Zhu | Wenchuan Wang | D. Cao | F. Deng | T. Ben | Shengqian Ma | J. Lan | Hao Ren | Dapeng Cao | Jianhui Lan | Teng Ben | Jun Xu | Jason M Simmons | X. Jing
[1] Wim Klopper,et al. On the Interaction of Dihydrogen with Aromatic Systems , 2004 .
[2] Andrew I. Cooper,et al. Conjugated Microporous Polymers , 2009 .
[3] Michael O'Keeffe,et al. Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.
[4] Neil L. Campbell,et al. High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. , 2009, Chemical communications.
[5] C. Serre,et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.
[6] Mircea Dincă,et al. Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.
[7] Ulrich Müller,et al. Industrial applications of metal-organic frameworks. , 2009, Chemical Society reviews.
[8] T. Yildirim,et al. Hydrogen and Methane Adsorption in Metal−Organic Frameworks: A High-Pressure Volumetric Study , 2007 .
[9] Michael O'Keeffe,et al. A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.
[10] B. Kirste,et al. 13C‐ENDOR Investigation of an Organic Tetraradical in the Quintet State; Synthesis of a Fourfold 13C‐Labeled Tetrakisgalvinol , 1986 .
[11] C. Serre,et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.
[12] A. Matzger,et al. A porous coordination copolymer with over 5000 m2/g BET surface area. , 2009, Journal of the American Chemical Society.
[13] Takakazu Yamamoto. π-Conjugated Polymers Bearing Electronic and Optical Functionalities. Preparation by Organometallic Polycondensations, Properties, and Their Applications , 1999 .
[14] Michael O'Keeffe,et al. Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.
[15] C. Rao,et al. An organic channel structure formed by the supramolecular assembly of trithiocyanuric acid and 4,4′-bipyridyl , 1999 .
[16] M. Grimm,et al. 13C‐ENDOR‐Untersuchung eines organischen Tetraradikals im Quintettzustand; Synthese eines vierfach 13C‐markierten Tetrakisgalvinols , 1986 .
[17] C. Rao,et al. Noncovalent Synthesis of Layered and Channel Structures involving Sulfur-Mediated Hydrogen Bonds , 1997 .
[18] Neil L. Campbell,et al. Conjugated microporous poly(aryleneethynylene) networks. , 2007, Angewandte Chemie.
[19] Michael Mastalerz. Die nächste Generation formstabiler Zeolith‐Analoga: kovalent gebundene organische Netzwerkverbindungen , 2008 .
[20] B. Smit,et al. LithiumhDoped 3D Covalent Organic Frameworks: HighhCapacity Hydrogen Storage Materials , 2009 .
[21] Gérard Férey,et al. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.
[22] Wenchuan Wang,et al. Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials. , 2009, Angewandte Chemie.
[23] K. Müllen,et al. Arylamine-substituted oligo(ladder-type pentaphenylene)s: electronic communication between bridged redox centers. , 2007, Journal of the American Chemical Society.
[24] Mark E. Davis. Ordered porous materials for emerging applications , 2002, Nature.
[25] C. Weder. Mikroporöse Polymere mit einstellbarer Porengröße , 2008 .
[26] Omar M Yaghi,et al. The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.
[27] M. Mastalerz. The next generation of shape-persistant zeolite analogues: covalent organic frameworks. , 2008, Angewandte Chemie.
[28] C. Weder. Hole control in microporous polymers. , 2008, Angewandte Chemie.