Beyond SAHF: An integrative view of chromatin compartmentalization during senescence.

[1]  M. Gorospe,et al.  Single-cell transcriptomic analysis uncovers diverse and dynamic senescent cell populations , 2023, Aging.

[2]  Marcel Mettlen,et al.  Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions , 2023, Science advances.

[3]  L. Mirny,et al.  Diverse silent chromatin states modulate genome compartmentalization and loop extrusion barriers , 2022, Nature Structural & Molecular Biology.

[4]  J. Ding,et al.  The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases , 2022, Cell regeneration.

[5]  M. Narita,et al.  Senescence: An Identity Crisis Originating from Deep Within the Nucleus. , 2022, Annual review of cell and developmental biology.

[6]  David R. Kelley,et al.  Novel insights from a multiomics dissection of the Hayflick limit , 2022, eLife.

[7]  V. Uversky,et al.  Phase separation of FG-nucleoporins in nuclear pore complexes. , 2022, Biochimica et biophysica acta. Molecular cell research.

[8]  Prim B. Singh,et al.  HP1-Driven Micro-Phase Separation of Heterochromatin-Like Domains/Complexes , 2022, Epigenetics insights.

[9]  T. Misteli,et al.  The stochastic nature of genome organization and function. , 2021, Current opinion in genetics & development.

[10]  M. Nicodemi,et al.  Loop-extrusion and polymer phase-separation can co-exist at the single-molecule level to shape chromatin folding , 2021, Nature Communications.

[11]  Jerelle A. Joseph,et al.  The Chromatin Regulator HMGA1a Undergoes Phase Separation in the Nucleus , 2021, bioRxiv.

[12]  M. Sasai,et al.  Generation of dynamic three-dimensional genome structure through phase separation of chromatin , 2021, bioRxiv.

[13]  A. Akhtar,et al.  Functional mechanisms and abnormalities of the nuclear lamina , 2021, Nature Cell Biology.

[14]  Z. Weng,et al.  Liquid chromatin Hi-C characterizes compartment-dependent chromatin interaction dynamics , 2021, Nature Genetics.

[15]  Yoko Ito,et al.  Locus-specific induction of gene expression from heterochromatin loci during cellular senescence , 2020, Nature Aging.

[16]  Yoko Ito,et al.  Transcription-dependent cohesin repositioning rewires chromatin loops in cellular senescence , 2020, Nature Communications.

[17]  K. Zhao,et al.  The epigenetic basis of cellular heterogeneity , 2020, Nature Reviews Genetics.

[18]  V. Corces,et al.  Principles of 3D compartmentalization of the human genome , 2020, bioRxiv.

[19]  Martin J. Aryee,et al.  Large-Scale Topological Changes Restrain Malignant Progression in Colorectal Cancer , 2020, Cell.

[20]  Daniel Jost,et al.  4D Genome Rewiring during Oncogene-Induced and Replicative Senescence , 2020, Molecular cell.

[21]  Anisha Shakya,et al.  Liquid-Liquid Phase Separation of Histone Proteins in Cells: Role in Chromatin Organization. , 2019, Biophysical journal.

[22]  C. Allis,et al.  Histone Modifications Regulate Chromatin Compartmentalization by Contributing to a Phase Separation Mechanism. , 2019, Molecular cell.

[23]  C. Schmitt,et al.  Cellular Senescence: Defining a Path Forward , 2019, Cell.

[24]  D. Marenduzzo,et al.  Polymer Modeling Predicts Chromosome Reorganization in Senescence , 2019, Cell reports.

[25]  Elie N. Farah,et al.  Transcriptionally Active HERV-H Retrotransposons Demarcate Topologically Associating Domains in Human Pluripotent Stem Cells , 2019, Nature Genetics.

[26]  L. Mirny,et al.  Heterochromatin drives compartmentalization of inverted and conventional nuclei , 2019, Nature.

[27]  A. Green,et al.  Notch Signaling Mediates Secondary Senescence , 2019, Cell reports.

[28]  H. Hess,et al.  Chromatin arranges in chains of mesoscale domains with nanoscale functional topography independent of cohesin , 2019, Science Advances.

[29]  M. Narita,et al.  Short-term gain, long-term pain: the senescence life cycle and cancer , 2019, Genes & development.

[30]  V. Corces,et al.  Organizational principles of 3D genome architecture , 2018, Nature Reviews Genetics.

[31]  W. Bickmore,et al.  Nuclear pore density controls heterochromatin reorganization during senescence , 2018, bioRxiv.

[32]  J. Mallm,et al.  HMGB2 Loss upon Senescence Entry Disrupts Genomic Organization and Induces CTCF Clustering across Cell Types. , 2018, Molecular cell.

[33]  Ronald C Petersen,et al.  Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. , 2018, The Journal of clinical investigation.

[34]  S. Balasubramanian,et al.  NOTCH-mediated non-cell autonomous regulation of chromatin structure during senescence , 2017, bioRxiv.

[35]  J. Shuga,et al.  Analysis of individual cells identifies cell‐to‐cell variability following induction of cellular senescence , 2017, Aging cell.

[36]  Masashi Narita,et al.  NOTCH1 mediates a switch between two distinct secretomes during senescence , 2016, Nature Cell Biology.

[37]  Darjus F. Tschaharganeh,et al.  BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance. , 2016, Cancer discovery.

[38]  Nicola Neretti,et al.  Reorganization of chromosome architecture in replicative cellular senescence , 2016, Science Advances.

[39]  X. Liu,et al.  JMJD3 promotes SAHF formation in senescent WI38 cells by triggering an interplay between demethylation and phosphorylation of RB protein , 2015, Cell Death and Differentiation.

[40]  Philip A. Ewels,et al.  Global Reorganization of the Nuclear Landscape in Senescent Cells , 2015, Cell reports.

[41]  V. Krizhanovsky,et al.  Physiological and pathological consequences of cellular senescence , 2014, Cellular and Molecular Life Sciences.

[42]  M. Narita,et al.  Cellular senescence and its effector programs , 2014, Genes & development.

[43]  J. Sharpe,et al.  Senescence Is a Developmental Mechanism that Contributes to Embryonic Growth and Patterning , 2013, Cell.

[44]  A. Rodríguez-Baeza,et al.  Programmed Cell Senescence during Mammalian Embryonic Development , 2013, Cell.

[45]  H. Gal,et al.  Cell fusion induced by ERVWE1 or measles virus causes cellular senescence , 2013, Genes & development.

[46]  P. A. Pérez-Mancera,et al.  Redistribution of the Lamin B1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence , 2013, Genes & development.

[47]  Rugang Zhang,et al.  BRG1 Is Required for Formation of Senescence-Associated Heterochromatin Foci Induced by Oncogenic RAS or BRCA1 Loss , 2013, Molecular and Cellular Biology.

[48]  L. Peichl,et al.  LBR and Lamin A/C Sequentially Tether Peripheral Heterochromatin and Inversely Regulate Differentiation , 2013, Cell.

[49]  Hiroshi Kimura,et al.  Independence of repressive histone marks and chromatin compaction during senescent heterochromatic layer formation. , 2012, Molecular cell.

[50]  S. Kosak,et al.  The role of nuclear lamin B1 in cell proliferation and senescence. , 2011, Genes & development.

[51]  R. Marmorstein,et al.  Human CABIN1 Is a Functional Member of the Human HIRA/UBN1/ASF1a Histone H3.3 Chaperone Complex , 2011, Molecular and Cellular Biology.

[52]  W. Hahn,et al.  Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer , 2011, Nature Cell Biology.

[53]  J. Bartek,et al.  Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16ink4a , 2011, Cell cycle.

[54]  F. Johnson,et al.  Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust Senescence Associated Heterochromatin Foci , 2010, Cell Division.

[55]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[56]  P. Abbe,et al.  Spleen tyrosine kinase functions as a tumor suppressor in melanoma cells by inducing senescence-like growth arrest. , 2009, Cancer research.

[57]  H. Ceulemans,et al.  Human UBN1 Is an Ortholog of Yeast Hpc2p and Has an Essential Role in the HIRA/ASF1a Chromatin-Remodeling Pathway in Senescent Cells , 2008, Molecular and Cellular Biology.

[58]  D. Rhodes,et al.  Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure , 2008, Proceedings of the National Academy of Sciences.

[59]  Rugang Zhang,et al.  Molecular Dissection of Formation of Senescence-Associated Heterochromatin Foci , 2007, Molecular and Cellular Biology.

[60]  F. Ishikawa,et al.  Loss of linker histone H1 in cellular senescence , 2006, The Journal of cell biology.

[61]  S. Lowe,et al.  A Novel Role for High-Mobility Group A Proteins in Cellular Senescence and Heterochromatin Formation , 2006, Cell.

[62]  A. Stein,et al.  Histone H1 Depletion in Mammals Alters Global Chromatin Structure but Causes Specific Changes in Gene Regulation , 2005, Cell.

[63]  Masashi Narita,et al.  Reversal of human cellular senescence: roles of the p53 and p16 pathways , 2003, The EMBO journal.

[64]  S. Lowe,et al.  Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence , 2003, Cell.

[65]  Andrew J. Bannister,et al.  Rb targets histone H3 methylation and HP1 to promoters , 2001, Nature.

[66]  S. Lowe,et al.  PML is induced by oncogenic ras and promotes premature senescence. , 2000, Genes & development.

[67]  P. M. Bemiller,et al.  Nucleolar changes in senescing WI-38 cells , 1978, Mechanisms of Ageing and Development.

[68]  Adrian A Canutescu,et al.  Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. , 2005, Developmental cell.