Islamic star patterns in absolute geometry

We present Najm, a set of tools built on the axioms of absolute geometry for exploring the design space of Islamic star patterns. Our approach makes use of a novel family of tilings, called "inflation tilings," which are particularly well suited as guides for creating star patterns. We describe a method for creating a parameterized set of motifs that can be used to fill the many regular polygons that comprise these tilings, as well as an algorithm to infer geometry for any irregular polygons that remain. Erasing the underlying tiling and joining together the inferred motifs produces the star patterns. By choice, Najm is build upon the subset of geometry that makes no assumption about the behavior of parallel lines. As a consequence, star patterns created by Najm can be designed equally well to fit the Euclidean plane, the hyperbolic plane, or the surface of a sphere.

[1]  進一 長谷川 John Hohenberg:The News Media:A Journalist Looks at His Profession, New York:Holt, Rinehart and Winston, Inc., 1968 , 1969 .

[2]  A. V. Shubnikov,et al.  Symmetry in Science and Art , 1974 .

[3]  Syed Jan Abas,et al.  SYMMETRIES OF ISLAMIC GEOMETRICAL PATTERNS , 1994 .

[4]  Victor Ostromoukhov,et al.  Mathematical Tools for Computer-Generated Ornamental Patterns , 1998, EP.

[5]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[6]  Jules Bourgoin,et al.  Arabic Geometrical Pattern and Design , 1973 .

[7]  Marvin J. Greenberg Euclidean and non-Euclidean geometries : development and history , 1977 .

[8]  Craig S. Kaplan,et al.  Computer Generated Islamic Star Patterns , 2000 .

[9]  Roberto Bonola,et al.  Non-Euclidean geometry , 1912 .

[10]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[11]  A. K. Dewdney,et al.  The Tinkertoy computer and other machinations , 1993 .

[12]  A. J. Lee,et al.  ISLAMIC STAR PATTERNS , 1986 .

[13]  Andrew S. Glassner,et al.  Proceedings of the 27th annual conference on Computer graphics and interactive techniques , 1994, SIGGRAPH 1994.

[14]  Craig S. Kaplan and George W. Hart,et al.  Symmetrohedra: Polyhedra from Symmetric Placement of Regular Polygons , 2001 .

[15]  Charlie Gunn,et al.  Discrete groups and visualization of three-dimensional manifolds , 1993, SIGGRAPH.

[16]  Howard Alexander,et al.  The computer/plotter and the 17 ornamental design types , 1975, SIGGRAPH '75.

[17]  Branko Grünbaum,et al.  Interlace Patterns in Islamic and Moorish Art , 1993 .

[18]  S. J. Abas,et al.  Geometric and Group‐theoretic Methods for Computer Graphic Studies of Islamic Symmetric Patterns , 1992, Comput. Graph. Forum.

[19]  Silvio Levy,et al.  Automatic Generation of Hyperbolic Tilings , 1993 .

[20]  Douglas Dunham,et al.  Artistic Patterns in Hyperbolic Geometry , 1999 .

[21]  Gülru Necipoğlu,et al.  The Topkapi scroll : geometry and ornament in Islamic architecture : Topkapı Palace Museum Library MS H. 1956 , 1995 .

[22]  H. C. Williams,et al.  Symmetries of culture , 1990, The Mathematical Gazette.

[23]  E. A. Maxwell Generators and Relations for Discrete Groups. By H. S. M. Coxeter and W O. Moser. Pp. ix, 161. DM. 32. (Second Edition; Springer-Verlag) , 1966, The Mathematical Gazette.

[24]  G. E. Martin The foundations of geometry and the non-Euclidean plane , 1984 .

[25]  Craig S. Kaplan,et al.  Escherization , 2000, SIGGRAPH.

[26]  Robin Kaplan Pattern in Islamic Art. David Wade , 1976 .

[27]  G. C. Shephard,et al.  Tilings and Patterns , 1990 .

[28]  Branko Grünbaum,et al.  The Emperor’s New clothes: Full regalia, G string, or nothing? , 1984 .

[29]  Douglas Dunham,et al.  Hyperbolic Islamic Patterns -- A Beginning , 2001 .

[30]  E. H. Hankin,et al.  The drawing of geometric patterns in Saracenic art , 1925 .

[31]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[32]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[33]  Dave Witte Morris,et al.  Creating repeating hyperbolic patterns , 1981, SIGGRAPH '81.